
Features
• High Performance, Low Power AVR® 8-Bit Microcontroller

• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 20 MIPS Throughput at 20 MHz

– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory Segments

– 4/8/16/32K Bytes of In-System Self-Programmable Flash progam memory

(ATmega48PA/88PA/168PA/328P)

– 256/512/512/1K Bytes EEPROM (ATmega48PA/88PA/168PA/328P)

– 512/1K/1K/2K Bytes Internal SRAM (ATmega48PA/88PA/168PA/328P)

– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

– Data retention: 20 years at 85°C/100 years at 25°C(1)

– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program

True Read-While-Write Operation

– Programming Lock for Software Security

• Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode

– Real Time Counter with Separate Oscillator

– Six PWM Channels

– 8-channel 10-bit ADC in TQFP and QFN/MLF package

Temperature Measurement

– 6-channel 10-bit ADC in PDIP Package

Temperature Measurement

– Programmable Serial USART

– Master/Slave SPI Serial Interface

– Byte-oriented 2-wire Serial Interface (Philips I2C compatible)

– Programmable Watchdog Timer with Separate On-chip Oscillator

– On-chip Analog Comparator

– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection

– Internal Calibrated Oscillator

– External and Internal Interrupt Sources

– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,

and Extended Standby

• I/O and Packages

– 23 Programmable I/O Lines

– 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

• Operating Voltage:

– 1.8 - 5.5V for ATmega48PA/88PA/168PA/328P

• Temperature Range:

– -40°C to 85°C

• Speed Grade:

– 0 - 20 MHz @ 1.8 - 5.5V

• Low Power Consumption at 1 MHz, 1.8V, 25°C for ATmega48PA/88PA/168PA/328P:

– Active Mode: 0.2 mA

– Power-down Mode: 0.1 µA

– Power-save Mode: 0.75 µA (Including 32 kHz RTC)

8-bit

Microcontroller

with 4/8/16/32K

Bytes In-System

Programmable

Flash

ATmega48PA

ATmega88PA

ATmega168PA

ATmega328P

Rev. 8161D–AVR–10/09

2

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

1. Pin Configurations

Figure 1-1. Pinout ATmega48PA/88PA/168PA/328P

1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

GND

VCC

GND

VCC

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

ADC7

GND

AREF

ADC6

AVCC

PB5 (SCK/PCINT5)

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

(P
C

IN
T

2
1
/O

C
0
B

/T
1
)

P
D

5

(P
C

IN
T

2
2
/O

C
0
A

/A
IN

0
)

P
D

6

(P
C

IN
T

2
3
/A

IN
1
)

P
D

7

(P
C

IN
T

0
/C

L
K

O
/I
C

P
1
)

P
B

0

(P
C

IN
T

1
/O

C
1
A

)
P

B
1

(P
C

IN
T

2
/S

S
/O

C
1
B

)
P

B
2

(P
C

IN
T

3
/O

C
2
A

/M
O

S
I)

 P
B

3

(P
C

IN
T

4
/M

IS
O

)
P

B
4

P
D

2
 (

IN
T

0
/P

C
IN

T
1
8
)

P
D

1
 (

T
X

D
/P

C
IN

T
1
7
)

P
D

0
 (

R
X

D
/P

C
IN

T
1
6
)

P
C

6
 (

R
E

S
E

T
/P

C
IN

T
1
4
)

P
C

5
 (

A
D

C
5
/S

C
L
/P

C
IN

T
1
3
)

P
C

4
 (

A
D

C
4
/S

D
A

/P
C

IN
T

1
2
)

P
C

3
 (

A
D

C
3
/P

C
IN

T
1
1
)

P
C

2
 (

A
D

C
2
/P

C
IN

T
1
0
)

TQFP Top View

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

(PCINT14/RESET) PC6

(PCINT16/RXD) PD0

(PCINT17/TXD) PD1

(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

VCC

GND

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7

(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)

PC4 (ADC4/SDA/PCINT12)

PC3 (ADC3/PCINT11)

PC2 (ADC2/PCINT10)

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

GND

AREF

AVCC

PB5 (SCK/PCINT5)

PB4 (MISO/PCINT4)

PB3 (MOSI/OC2A/PCINT3)

PB2 (SS/OC1B/PCINT2)

PB1 (OC1A/PCINT1)

PDIP

1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

32 MLF Top View

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

GND

VCC

GND

VCC

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

ADC7

GND

AREF

ADC6

AVCC

PB5 (SCK/PCINT5)

(P
C

IN
T

2
1
/O

C
0
B

/T
1
)

P
D

5

(P
C

IN
T

2
2
/O

C
0
A

/A
IN

0
)

P
D

6

(P
C

IN
T

2
3
/A

IN
1
)

P
D

7

(P
C

IN
T

0
/C

L
K

O
/I
C

P
1
)

P
B

0

(P
C

IN
T

1
/O

C
1
A

)
P

B
1

(P
C

IN
T

2
/S

S
/O

C
1
B

)
P

B
2

(P
C

IN
T

3
/O

C
2
A

/M
O

S
I)

 P
B

3

(P
C

IN
T

4
/M

IS
O

)
P

B
4

P
D

2
 (

IN
T

0
/P

C
IN

T
1
8
)

P
D

1
 (

T
X

D
/P

C
IN

T
1
7
)

P
D

0
 (

R
X

D
/P

C
IN

T
1
6
)

P
C

6
 (

R
E

S
E

T
/P

C
IN

T
1
4
)

P
C

5
 (

A
D

C
5
/S

C
L
/P

C
IN

T
1
3
)

P
C

4
 (

A
D

C
4
/S

D
A

/P
C

IN
T

1
2
)

P
C

3
 (

A
D

C
3
/P

C
IN

T
1
1
)

P
C

2
 (

A
D

C
2
/P

C
IN

T
1
0
)

NOTE: Bottom pad should be soldered to ground.

1

2

3

4

5

6

7

21

20

19

18

17

16

15

2
8

2
7

2
6

2
5

2
4

2
3

2
2

8 9 1
0

1
1

1
2

1
3

1
4

28 MLF Top View

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

VCC

GND

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(P
C

IN
T

2
2
/O

C
0
A

/A
IN

0
)

P
D

6

(P
C

IN
T

2
3
/A

IN
1
)

P
D

7

(P
C

IN
T

0
/C

L
K

O
/I
C

P
1
)

P
B

0

(P
C

IN
T

1
/O

C
1
A

)
P

B
1

(P
C

IN
T

2
/S

S
/O

C
1
B

)
P

B
2

(P
C

IN
T

3
/O

C
2
A

/M
O

S
I)

 P
B

3

(P
C

IN
T

4
/M

IS
O

)
P

B
4

P
D

2
 (

IN
T

0
/P

C
IN

T
1
8
)

P
D

1
 (

T
X

D
/P

C
IN

T
1
7
)

P
D

0
 (

R
X

D
/P

C
IN

T
1
6
)

P
C

6
 (

R
E

S
E

T
/P

C
IN

T
1
4
)

P
C

5
 (

A
D

C
5
/S

C
L
/P

C
IN

T
1
3
)

P
C

4
 (

A
D

C
4
/S

D
A

/P
C

IN
T

1
2
)

P
C

3
 (

A
D

C
3
/P

C
IN

T
1
1
)

PC2 (ADC2/PCINT10)

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

GND

AREF

AVCC

PB5 (SCK/PCINT5)

NOTE: Bottom pad should be soldered to ground.

3

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port B output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscil-

lator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting

Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1

input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page

82 and ”System Clock and Clock Options” on page 26.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

PC5..0 output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char-

acteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin

for longer than the minimum pulse length will generate a Reset, even if the clock is not running.

The minimum pulse length is given in Table 28-3 on page 318. Shorter pulses are not guaran-

teed to generate a Reset.

The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page

85.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port D output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

4

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page

88.

1.1.7 AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally

connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC

through a low-pass filter. Note that PC6..4 use digital supply voltage, VCC.

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter.

These pins are powered from the analog supply and serve as 10-bit ADC channels.

5

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

2. Overview
The ATmega48PA/88PA/168PA/328P is a low-power CMOS 8-bit microcontroller based on the

AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the

ATmega48PA/88PA/168PA/328P achieves throughputs approaching 1 MIPS per MHz allowing

the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the

32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent

registers to be accessed in one single instruction executed in one clock cycle. The resulting

PORT C (7)PORT B (8)PORT D (8)

USART 0

8bit T/C 2

16bit T/C 18bit T/C 0 A/D Conv.

Internal

Bandgap

Analog

Comp.

SPI TWI

SRAMFlash

EEPROM

Watchdog

Oscillator

Watchdog

Timer

Oscillator

Circuits /

Clock

Generation

Power

Supervision

POR / BOD &

RESET

V
C

C

G
N

D

PROGRAM
LOGIC

debugWIRE

2

GND

AREF

AVCC

D
A
T
A

B
U

S

ADC[6..7]PC[0..6]PB[0..7]PD[0..7]

6

RESET

XTAL[1..2]

CPU

6

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

architecture is more code efficient while achieving throughputs up to ten times faster than con-

ventional CISC microcontrollers.

The ATmega48PA/88PA/168PA/328P provides the following features: 4K/8K bytes of In-System

Programmable Flash with Read-While-Write capabilities, 256/512/512/1K bytes EEPROM,

512/1K/1K/2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers,

three flexible Timer/Counters with compare modes, internal and external interrupts, a serial pro-

grammable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit

ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with

internal Oscillator, and five software selectable power saving modes. The Idle mode stops the

CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and

interrupt system to continue functioning. The Power-down mode saves the register contents but

freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset.

In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a

timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the

CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise dur-

ing ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest

of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The

On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI

serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-

gram running on the AVR core. The Boot program can use any interface to download the

application program in the Application Flash memory. Software in the Boot Flash section will

continue to run while the Application Flash section is updated, providing true Read-While-Write

operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a

monolithic chip, the Atmel ATmega48PA/88PA/168PA/328P is a powerful microcontroller that

provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48PA/88PA/168PA/328P AVR is supported with a full suite of program and system

development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators,

In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P

The ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P differ only in memory

sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different mem-

ory and interrupt vector sizes for the three devices.

ATmega88PA, ATmega168PA and ATmega328P support a real Read-While-Write Self-Pro-

gramming mechanism. There is a separate Boot Loader Section, and the SPM instruction can

only execute from there. In ATmega48PA, there is no Read-While-Write support and no sepa-

rate Boot Loader Section. The SPM instruction can execute from the entire Flash.

Table 2-1. Memory Size Summary

Device Flash EEPROM RAM Interrupt Vector Size

ATmega48PA 4K Bytes 256 Bytes 512 Bytes 1 instruction word/vector

ATmega88PA 8K Bytes 512 Bytes 1K Bytes 1 instruction word/vector

ATmega168PA 16K Bytes 512 Bytes 1K Bytes 2 instruction words/vector

ATmega328P 32K Bytes 1K Bytes 2K Bytes 2 instruction words/vector

7

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

3. Resources
A comprehensive set of development tools, application notes and datasheets are available for

download on http://www.atmel.com/avr.

Note: 1.

4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less

than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of

the device. These code examples assume that the part specific header file is included before

compilation. Be aware that not all C compiler vendors include bit definitions in the header files

and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-

tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”

instructions must be replaced with instructions that allow access to extended I/O. Typically

“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

8

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

6. AVR CPU Core

6.1 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core

is to ensure correct program execution. The CPU must therefore be able to access memories,

perform calculations, control peripherals, and handle interrupts.

Figure 6-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with

separate memories and buses for program and data. Instructions in the program memory are

executed with a single level pipelining. While one instruction is being executed, the next instruc-

tion is pre-fetched from the program memory. This concept enables instructions to be executed

in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single

clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ir
e

c
t

A
d

d
re

s
s
in

g

In
d

ir
e

c
t

A
d

d
re

s
s
in

g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

9

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

ical ALU operation, two operands are output from the Register File, the operation is executed,

and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data

Space addressing – enabling efficient address calculations. One of the these address pointers

can also be used as an address pointer for look up tables in Flash program memory. These

added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and

a register. Single register operations can also be executed in the ALU. After an arithmetic opera-

tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to

directly address the whole address space. Most AVR instructions have a single 16-bit word for-

mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the

Application Program section. Both sections have dedicated Lock bits for write and read/write

protection. The SPM instruction that writes into the Application Flash memory section must

reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the

Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack

size is only limited by the total SRAM size and the usage of the SRAM. All user programs must

initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack

Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed

through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global

Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the

Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-

tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-

ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data

Space locations following those of the Register File, 0x20 - 0x5F. In addition, the

ATmega48PA/88PA/168PA/328P has Extended I/O space from 0x60 - 0xFF in SRAM where

only the ST/STS/STD and LD/LDS/LDD instructions can be used.

6.2 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose

working registers. Within a single clock cycle, arithmetic operations between general purpose

registers or between a register and an immediate are executed. The ALU operations are divided

into three main categories – arithmetic, logical, and bit-functions. Some implementations of the

architecture also provide a powerful multiplier supporting both signed/unsigned multiplication

and fractional format. See the “Instruction Set” section for a detailed description.

6.3 Status Register

The Status Register contains information about the result of the most recently executed arithme-

tic instruction. This information can be used for altering program flow in order to perform

conditional operations. Note that the Status Register is updated after all ALU operations, as

10

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

specified in the Instruction Set Reference. This will in many cases remove the need for using the

dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored

when returning from an interrupt. This must be handled by software.

6.3.1 SREG – AVR Status Register

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-

rupt enable control is then performed in separate control registers. If the Global Interrupt Enable

Register is cleared, none of the interrupts are enabled independent of the individual interrupt

enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by

the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by

the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-

nation for the operated bit. A bit from a register in the Register File can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the

BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful

in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement

Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the

“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the

“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction

Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set

Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

11

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

6.4 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve

the required performance and flexibility, the following input/output schemes are supported by the

Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and

most of them are single cycle instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them

directly into the first 32 locations of the user Data Space. Although not being physically imple-

mented as SRAM locations, this memory organization provides great flexibility in access of the

registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

12

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

6.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-

isters are 16-bit address pointers for indirect addressing of the data space. The three indirect

address registers X, Y, and Z are defined as described in Figure 6-3.

Figure 6-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,

automatic increment, and automatic decrement (see the instruction set reference for details).

6.5 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing

return addresses after interrupts and subroutine calls. Note that the Stack is implemented as

growing from higher to lower memory locations. The Stack Pointer Register always points to the

top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine

and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are

executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the

internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Table 7-

3 on page 18.

See Table 6-1 for Stack Pointer details.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of

bits actually used is implementation dependent. Note that the data space in some implementa-

tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register

will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Table 6-1. Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2
Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from
subroutine or return from interrupt

13

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

6.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

6.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR

CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the

chip. No internal clock division is used.

Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the Har-

vard architecture and the fast-access Register File concept. This is the basic pipelining concept

to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,

functions per clocks, and functions per power-unit.

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions

Figure 6-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU

operation using two register operands is executed, and the result is stored back to the destina-

tion register.

Figure 6-5. Single Cycle ALU Operation

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clk
CPU

14

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

6.7 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset

Vector each have a separate program vector in the program memory space. All interrupts are

assigned individual enable bits which must be written logic one together with the Global Interrupt

Enable bit in the Status Register in order to enable the interrupt. Depending on the Program

Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12

are programmed. This feature improves software security. See the section ”Memory Program-

ming” on page 294 for details.

The lowest addresses in the program memory space are by default defined as the Reset and

Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 57. The list also

determines the priority levels of the different interrupts. The lower the address the higher is the

priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request

0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL

bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 57 for more information.

The Reset Vector can also be moved to the start of the Boot Flash section by programming the

BOOTRST Fuse, see ”Boot Loader Support – Read-While-Write Self-Programming,

ATmega88PA, ATmega168PA and ATmega328P” on page 277.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-

abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled

interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a

Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the

Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-

tor in order to execute the interrupt handling routine, and hardware clears the corresponding

Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)

to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is

cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is

cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt

Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the

Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These

interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the

interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one

more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor

restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.

No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

CLI instruction. The following example shows how this can be used to avoid interrupts during the

timed EEPROM write sequence.

15

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

6.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-

mum. After four clock cycles the program vector address for the actual interrupt handling routine

is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.

The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If

an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed

before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt

execution response time is increased by four clock cycles. This increase comes in addition to the

start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock

cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is

incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

16

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

7. AVR Memories

7.1 Overview

This section describes the different memories in the ATmega48PA/88PA/168PA/328P. The AVR

architecture has two main memory spaces, the Data Memory and the Program Memory space.

In addition, the ATmega48PA/88PA/168PA/328P features an EEPROM Memory for data stor-

age. All three memory spaces are linear and regular.

7.2 In-System Reprogrammable Flash Program Memory

The ATmega48PA/88PA/168PA/328P contains 4/8/16/32K bytes On-chip In-System Repro-

grammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits

wide, the Flash is organized as 2/4/8/16K x 16. For software security, the Flash Program mem-

ory space is divided into two sections, Boot Loader Section and Application Program Section in

ATmega88PA and ATmega168PA. See SELFPRGEN description in section ”SPMCSR – Store

Program Memory Control and Status Register” on page 292 for more details.

The Flash memory has an endurance of at least 10,000 wri te/erase cycles. The

ATmega48PA/88PA/168PA/328P Program Counter (PC) is 11/12/13/14 bits wide, thus address-

ing the 2/4/8/16K program memory locations. The operation of Boot Program section and

associated Boot Lock bits for software protection are described in detail in ”Self-Programming

the Flash, ATmega48PA” on page 269 and ”Boot Loader Support – Read-While-Write Self-Pro-

gramming, ATmega88PA, ATmega168PA and ATmega328P” on page 277. ”Memory

Programming” on page 294 contains a detailed description on Flash Programming in SPI- or

Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM

– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Tim-

ing” on page 13.

17

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 7-1. Program Memory Map ATmega48PA

Figure 7-2. Program Memory Map ATmega88PA, ATmega168PA and ATmega328P

0x0000

0x7FF

Program Memory

Application Flash Section

0x0000

0x0FFF/0x1FFF/0x3FFF

Program Memory

Application Flash Section

Boot Flash Section

18

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

7.3 SRAM Data Memory

Figure 7-3 shows how the ATmega48PA/88PA/168PA/328P SRAM Memory is organized.

The ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units

than can be supported within the 64 locations reserved in the Opcode for the IN and OUT

instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and

LD/LDS/LDD instructions can be used.

The lower 768/1280/1280/2303 data memory locations address both the Register File, the I/O

memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address the

Register File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O

memory, and the next 512/1024/1024/2048 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-

ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register

File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given

by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-

ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and

the 512/1024/1024/2048 bytes of internal data SRAM in the ATmega48PA/88PA/168PA/328P

are all accessible through all these addressing modes. The Register File is described in ”Gen-

eral Purpose Register File” on page 11.

Figure 7-3. Data Memory Map

32 Registers
64 I/O Registers

Internal SRAM
(512/1024/1024/2048 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x04FF/0x04FF/0x0FF/0x08FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
0x0100

19

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

7.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The

internal data SRAM access is performed in two clkCPU cycles as described in Figure 7-4.

Figure 7-4. On-chip Data SRAM Access Cycles

7.4 EEPROM Data Memory

The ATmega48PA/88PA/168PA/328P contains 256/512/512/1K bytes of data EEPROM mem-

ory. It is organized as a separate data space, in which single bytes can be read and written. The

EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the

EEPROM and the CPU is described in the following, specifying the EEPROM Address Regis-

ters, the EEPROM Data Register, and the EEPROM Control Register.

”Memory Programming” on page 294 contains a detailed description on EEPROM Programming

in SPI or Parallel Programming mode.

7.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 7-2. A self-timing function, however,

lets the user software detect when the next byte can be written. If the user code contains instruc-

tions that write the EEPROM, some precautions must be taken. In heavily filtered power

supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some

period of time to run at a voltage lower than specified as minimum for the clock frequency used.

See ”Preventing EEPROM Corruption” on page 20 for details on how to avoid problems in these

situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is

executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next

instruction is executed.

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
e

a
d

W
ri

te

CPU

Memory Access Instruction Next Instruction

20

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

7.4.2 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is

too low for the CPU and the EEPROM to operate properly. These issues are the same as for

board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,

a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-

ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can

be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal

BOD does not match the needed detection level, an external low VCC reset Protection circuit can

be used. If a reset occurs while a write operation is in progress, the write operation will be com-

pleted provided that the power supply voltage is sufficient.

7.5 I/O Memory

The I/O space definition of the ATmega48PA/88PA/168PA/328P is shown in ”Register Sum-

mary” on page 423.

All ATmega48PA/88PA/168PA/328P I/Os and peripherals are placed in the I/O space. All I/O

locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data

between the 32 general purpose working registers and the I/O space. I/O Registers within the

address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In

these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

Refer to the instruction set section for more details. When using the I/O specific commands IN

and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data

space using LD and ST instructions, 0x20 must be added to these addresses. The

ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units than

can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For

the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD

instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most

other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore

be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-

isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

7.5.1 General Purpose I/O Registers

The ATmega48PA/88PA/168PA/328P contains three General Purpose I/O Registers. These

registers can be used for storing any information, and they are particularly useful for storing

global variables and Status Flags. General Purpose I/O Registers within the address range 0x00

- 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

21

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

7.6 Register Description

7.6.1 EEARH and EEARL – The EEPROM Address Register

• Bits 15..9 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bits 8..0 – EEAR8..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the

256/512/512/1K bytes EEPROM space. The EEPROM data bytes are addressed linearly

between 0 and 255/511/511/1023. The initial value of EEAR is undefined. A proper value must

be written before the EEPROM may be accessed.

EEAR8 is an unused bit in ATmega48PA and must always be written to zero.

7.6.2 EEDR – The EEPROM Data Register

• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the

EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the

EEDR contains the data read out from the EEPROM at the address given by EEAR.

7.6.3 EECR – The EEPROM Control Register

• Bits 7..6 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be trig-

gered when writing EEPE. It is possible to program data in one atomic operation (erase the old

value and program the new value) or to split the Erase and Write operations in two different

operations. The Programming times for the different modes are shown in Table 7-1. While EEPE

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0

22

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00

unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing

EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-

rupt when EEPE is cleared. The interrupt will not be generated during EEPROM write or SPM.

• Bit 2 – EEMPE: EEPROM Master Write Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.

When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the

selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been

written to one by software, hardware clears the bit to zero after four clock cycles. See the

description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Write Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address

and data are correctly set up, the EEPE bit must be written to one to write the value into the

EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-

wise no EEPROM write takes place. The following procedure should be followed when writing

the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software

must check that the Flash programming is completed before initiating a new EEPROM write.

Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the

Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Boot Loader

Support – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and

ATmega328P” on page 277 for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the

EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is

interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the

interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared

during all the steps to avoid these problems.

Table 7-1. EEPROM Mode Bits

EEPM1 EEPM0

Programming

Time Operation

0 0 3.4 ms Erase and Write in one operation (Atomic Operation)

0 1 1.8 ms Erase Only

1 0 1.8 ms Write Only

1 1 – Reserved for future use

23

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-

ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,

the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct

address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the

EEPROM read. The EEPROM read access takes one instruction, and the requested data is

available immediately. When the EEPROM is read, the CPU is halted for four cycles before the

next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in

progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-2 lists the typical pro-

gramming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the

EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-

ally) so that no interrupts will occur during execution of these functions. The examples also

assume that no Flash Boot Loader is present in the software. If such code is present, the

EEPROM write function must also wait for any ongoing SPM command to finish.

Table 7-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write
(from CPU)

26,368 3.3 ms

24

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

25

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The next code examples show assembly and C functions for reading the EEPROM. The exam-

ples assume that interrupts are controlled so that no interrupts will occur during execution of

these functions.

7.6.4 GPIOR2 – General Purpose I/O Register 2

7.6.5 GPIOR1 – General Purpose I/O Register 1

7.6.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from Data Register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

26

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8. System Clock and Clock Options

8.1 Clock Systems and their Distribution

Figure 8-1 presents the principal clock systems in the AVR and their distribution. All of the clocks

need not be active at a given time. In order to reduce power consumption, the clocks to modules

not being used can be halted by using different sleep modes, as described in ”Power Manage-

ment and Sleep Modes” on page 39. The clock systems are detailed below.

Figure 8-1. Clock Distribution

8.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.

Examples of such modules are the General Purpose Register File, the Status Register and the

data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing

general operations and calculations.

8.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.

The I/O clock is also used by the External Interrupt module, but note that some external inter-

rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O

clock is halted. Also note that start condition detection in the USI module is carried out asynchro-

nously when clkI/O is halted, TWI address recognition in all sleep modes.

8.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-

taneously with the CPU clock.

General I/O
Modules

Asynchronous
Timer/Counter

CPU Core RAM

clk
I/O

clk
ASY

AVR Clock
Control Unit

clk
CPU

Flash and
EEPROM

clk
FLASH

Source clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External Clock

ADC

clk
ADC

System Clock
Prescaler

27

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly

from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows

using this Timer/Counter as a real-time counter even when the device is in sleep mode.

8.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks

in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion

results.

8.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown

below. The clock from the selected source is input to the AVR clock generator, and routed to the

appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

8.2.1 Default Clock Source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 pro-

grammed, resulting in 1.0MHz system clock. The startup time is set to maximum and time-out

period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures that

all users can make their desired clock source setting using any available programming interface.

8.2.2 Clock Startup Sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating

cycles before it can be considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after

the device reset is released by all other reset sources. ”System Control and Reset” on page 46

describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watchdog

Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The

Table 8-1. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

Low Power Crystal Oscillator 1111 - 1000

Full Swing Crystal Oscillator 0111 - 0110

Low Frequency Crystal Oscillator 0101 - 0100

Internal 128 kHz RC Oscillator 0011

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0001

28

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

selectable delays are shown in Table 8-2. The frequency of the Watchdog Oscillator is voltage

dependent as shown in ”Typical Characteristics” on page 326.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC. The

delay will not monitor the actual voltage and it will be required to select a delay longer than the

VCC rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be

used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the time-out delay

can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is

not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-

ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal

reset active for a given number of clock cycles. The reset is then released and the device will

start to execute. The recommended oscillator start-up time is dependent on the clock type, and

varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when

the device starts up from reset. When starting up from Power-save or Power-down mode, VCC is

assumed to be at a sufficient level and only the start-up time is included.

8.3 Low Power Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be

configured for use as an On-chip Oscillator, as shown in Figure 8-2 on page 29. Either a quartz

crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-

put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and

may be more susceptible to noise in noisy environments. In these cases, refer to the ”Full Swing

Crystal Oscillator” on page 30.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the

capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the

electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for

use with crystals are given in Table 8-3 on page 29. For ceramic resonators, the capacitor val-

ues given by the manufacturer should be used.

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0 ms 0 ms 0

4.1 ms 4.3 ms 512

65 ms 69 ms 8K (8,192)

29

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 8-2. Crystal Oscillator Connections

The Low Power Oscillator can operate in three different modes, each optimized for a specific fre-

quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 8-3

on page 29.

Notes: 1. This is the recommanded CKSEL settings for the difference frenquency ranges.
2. This option should not be used with crystals, only with ceramic resonators.
3. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8

Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table

8-4.

Table 8-3. Low Power Crystal Oscillator Operating Modes(3)

 Frequency Range

(MHz)

Recommended Range for

Capacitors C1 and C2 (pF) CKSEL3..1(1)

0.4 - 0.9 – 100(2)

0.9 - 3.0 12 - 22 101

3.0 - 8.0 12 - 22 110

8.0 - 16.0 12 - 22 111

Table 8-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Oscillator Source /

Power Conditions

Start-up Time from

Power-down and

Power-save

Additional Delay

from Reset

(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast
rising power

258 CK 14CK + 4.1 ms(1) 0 00

Ceramic resonator, slowly
rising power

258 CK 14CK + 65 ms(1) 0 01

Ceramic resonator, BOD
enabled

1K CK 14CK(2) 0 10

Ceramic resonator, fast
rising power

1K CK 14CK + 4.1 ms(2) 0 11

Ceramic resonator, slowly
rising power

1K CK 14CK + 65 ms(2) 1 00

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C2

C1

30

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

8.4 Full Swing Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be

configured for use as an On-chip Oscillator, as shown in Figure 8-2 on page 29. Either a quartz

crystal or a ceramic resonator may be used.

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is

useful for driving other clock inputs and in noisy environments. The current consumption is

higher than the ”Low Power Crystal Oscillator” on page 28. Note that the Full Swing Crystal

Oscillator will only operate for VCC = 2.7 - 5.5 volts.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the

capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the

electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for

use with crystals are given in Table 8-6 on page 31. For ceramic resonators, the capacitor val-

ues given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 8-5.

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

Crystal Oscillator, BOD
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast
rising power

16K CK 14CK + 4.1 ms 1 10

Crystal Oscillator, slowly
rising power

16K CK 14CK + 65 ms 1 11

Table 8-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection (Continued)

Oscillator Source /

Power Conditions

Start-up Time from

Power-down and

Power-save

Additional Delay

from Reset

(VCC = 5.0V) CKSEL0 SUT1..0

Table 8-5. Full Swing Crystal Oscillator operating modes

Frequency Range(1)

(MHz)

Recommended Range for

Capacitors C1 and C2 (pF) CKSEL3..1

0.4 - 20 12 - 22 011

31

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 8-3. Crystal Oscillator Connections

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Table 8-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source /

Power Conditions

Start-up Time from

Power-down and

Power-save

Additional Delay

from Reset

(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast
rising power

258 CK 14CK + 4.1 ms(1) 0 00

Ceramic resonator, slowly
rising power

258 CK 14CK + 65 ms(1) 0 01

Ceramic resonator, BOD
enabled

1K CK 14CK(2) 0 10

Ceramic resonator, fast
rising power

1K CK 14CK + 4.1 ms(2) 0 11

Ceramic resonator, slowly
rising power

1K CK 14CK + 65 ms(2) 1 00

Crystal Oscillator, BOD
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast
rising power

16K CK 14CK + 4.1 ms 1 10

Crystal Oscillator, slowly
rising power

16K CK 14CK + 65 ms 1 11

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C2

C1

32

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8.5 Low Frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768 kHz watch crystal.

When selecting crystals, load capasitance and crystal’s Equivalent Series Resistance, ESR

must be taken into consideration. Both values are specified by the crystal vendor.

ATmega48PA/88PA/168PA/328P oscillator is optimized for very low power consumption, and

thus when selecting crystals, see Table 8-7 on page 32 for maximum ESR recommendations on

6.5 pF, 9.0 pF and 12.5 pF crystals

Table 8-7. Maximum ESR Recommendation for 32.768 kHz Crystal Oscillator

Note: 1. Maximum ESR is typical value based on characterization

The Low-frequency Crystal Oscillator provides an internal load capacitance at each TOSC pin

as specified in the Table 8-8 on page 32.

The external capacitance (C) needed at each TOSC pin can be calculated by using:

where CL is the load capacitance for a 32.768 kHz crystal specified by the crystal vendor and CS

is the total stray capacitance for one TOSC pin.

Crystals specifying load capacitance (CL) higher than the ones given in the Table 8-8 on page

32, require external capacitors applied as described in Figure 8-2 on page 29.

The Low-frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “0110” or

“0111”, as shown in Table 8-10. Start-up times are determined by the SUT Fuses as shown in

Table 8-9.

Crystal CL (pF) Max ESR [kΩ](1)

6.5 75

9.0 65

12.5 30

Table 8-8. Capacitance for Low-Frequency Crystal Oscillator

Device 32 kHz Osc. Type Cap (Xtal1/Tosc1) Cap (Xtal2/Tosc2)

ATmega48PA/88PA/168PA/328P System Osc. 18 pF 8 pF

Timer Osc. 18 pF 8 pF

Table 8-9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 4 CK Fast rising power or BOD enabled

01 4 CK + 4.1 ms Slowly rising power

10 4 CK + 65 ms Stable frequency at start-up

11 Reserved

C 2 CL⋅ Cs–=

33

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. This option should only be used if frequency stability at start-up is not important for the
application

8.6 Calibrated Internal RC Oscillator

By default, the Internal RC Oscillator provides an approximate 8.0 MHz clock. Though voltage

and temperature dependent, this clock can be very accurately calibrated by the user. See Table

28-1 on page 317 for more details. The device is shipped with the CKDIV8 Fuse programmed.

See ”System Clock Prescaler” on page 35 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in

Table 8-11. If selected, it will operate with no external components. During reset, hardware loads

the pre-programmed calibration value into the OSCCAL Register and thereby automatically cal-

ibrates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in

Table 28-1 on page 317.

By changing the OSCCAL register from SW, see ”OSCCAL – Oscillator Calibration Register” on

page 37, it is possible to get a higher calibration accuracy than by using the factory calibration.

The accuracy of this calibration is shown as User calibration in Table 28-1 on page 317.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the

Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-

bration value, see the section ”Calibration Byte” on page 298.

Notes: 1. The device is shipped with this option selected.
2. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8

Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-12 on page 33.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1 ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.

Table 8-10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0

Start-up Time from

Power-down and Power-save Recommended Usage

0100(1) 1K CK

0101 32K CK Stable frequency at start-up

Table 8-11. Internal Calibrated RC Oscillator Operating Modes

Frequency Range(2) (MHz) CKSEL3..0

7.3 - 8.1 0010(1)

Table 8-12. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions

Start-up Time from Power-

down and Power-save

Additional Delay from

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK(1) 00

Fast rising power 6 CK 14CK + 4.1 ms 01

Slowly rising power 6 CK 14CK + 65 ms(2) 10

Reserved 11

34

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8.7 128 kHz Internal Oscillator

The 128 kHz internal Oscillator is a low power Oscillator providing a clock of 128 kHz. The fre-

quency is nominal at 3V and 25°C. This clock may be select as the system clock by

programming the CKSEL Fuses to “11” as shown in Table 8-13.

Note: 1. Note that the 128 kHz oscillator is a very low power clock source, and is not designed for high
accuracy.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-14.

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to
14CK + 4.1 ms to ensure programming mode can be entered.

8.8 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure

8-4 on page 34. To run the device on an external clock, the CKSEL Fuses must be programmed

to “0000” (see Table 8-15).

Figure 8-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-16.

Table 8-13. 128 kHz Internal Oscillator Operating Modes

Nominal Frequency(1) CKSEL3..0

128 kHz 0011

Table 8-14. Start-up Times for the 128 kHz Internal Oscillator

Power Conditions

Start-up Time from Power-

down and Power-save

Additional Delay from

Reset SUT1..0

BOD enabled 6 CK 14CK(1) 00

Fast rising power 6 CK 14CK + 4 ms 01

Slowly rising power 6 CK 14CK + 64 ms 10

Reserved 11

Table 8-15. Crystal Oscillator Clock Frequency

Frequency CKSEL3..0

0 - 20 MHz 0000

NC

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND

35

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-

quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from

one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is

required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal

clock frequency while still ensuring stable operation. Refer to ”System Clock Prescaler” on page

35 for details.

8.9 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT

Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-

cuits on the system. The clock also will be output during reset, and the normal operation of I/O

pin will be overridden when the fuse is programmed. Any clock source, including the internal RC

Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is

used, it is the divided system clock that is output.

8.10 Timer/Counter Oscillator

ATmega48PA/88PA/168PA/328P uses the same crystal oscillator for Low-frequency Oscillator

and Timer/Counter Oscillator. See ”Low Frequency Crystal Oscillator” on page 32 for details on

the oscillator and crystal requirements.

ATmega48PA/88PA/168PA/328P share the Timer/Counter Oscillator Pins (TOSC1 and TOSC2)

with XTAL1 and XTAL2. When using the Timer/Counter Oscillator, the system clock needs to be

four times the oscillator frequency. Due to this and the pin sharing, the Timer/Counter Oscillator

can only be used when the Calibrated Internal RC Oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is

written to logic one. See ”Asynchronous Operation of Timer/Counter2” on page 155 for further

description on selecting external clock as input instead of a 32.768 kHz watch crystal.

8.11 System Clock Prescaler

The ATmega48PA/88PA/168PA/328P has a system clock prescaler, and the system clock can

be divided by setting the ”CLKPR – Clock Prescale Register” on page 377. This feature can be

used to decrease the system clock frequency and the power consumption when the requirement

for processing power is low. This can be used with all clock source options, and it will affect the

clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH

are divided by a factor as shown in Table 28-3 on page 318.

Table 8-16. Start-up Times for the External Clock Selection

Power Conditions

Start-up Time from Power-

down and Power-save

Additional Delay from

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1 ms 01

Slowly rising power 6 CK 14CK + 65 ms 10

Reserved 11

36

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When switching between prescaler settings, the System Clock Prescaler ensures that no

glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than

neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-

sponding to the new setting. The ripple counter that implements the prescaler runs at the

frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it

is not possible to determine the state of the prescaler - even if it were readable, and the exact

time it takes to switch from one clock division to the other cannot be exactly predicted. From the

time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 * T2 before the new

clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the pre-

vious clock period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must befollowed to

change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bitsin
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is

not interrupted.

37

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8.12 Register Description

8.12.1 OSCCAL – Oscillator Calibration Register

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to

remove process variations from the oscillator frequency. A pre-programmed calibration value is

automatically written to this register during chip reset, giving the Factory calibrated frequency as

specified in Table 28-1 on page 317. The application software can write this register to change

the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-

1 on page 317. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write

times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more

than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the

lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-

quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher

frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00

gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the

range.

8.12.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE

bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is

cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the

CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the

CLKPCE bit.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system

clock. These bits can be written run-time to vary the clock frequency to suit the application

requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-

nous peripherals is reduced when a division factor is used. The division factors are given in

Table 8-17 on page 38.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

38

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,

the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to

“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock

source has a higher frequency than the maximum frequency of the device at the present operat-

ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8

Fuse setting. The Application software must ensure that a sufficient division factor is chosen if

the selected clock source has a higher frequency than the maximum frequency of the device at

the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 8-17. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

39

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving

power. The AVR provides various sleep modes allowing the user to tailor the power consump-

tion to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during

the sleep periods. To further save power, it is possible to disable the BOD in some sleep modes.

See ”BOD Disable” on page 40 for more details.

9.1 Sleep Modes

F igure 8 -1 on page 26 p resen ts the d i f fe ren t c lock sys tems in t he

ATmega48PA/88PA/168PA/328P, and their distribution. The figure is helpful in selecting an

appropriate sleep mode. Table 9-1 shows the different sleep modes, their wake up sources BOD

disable ability.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.
3. For INT1 and INT0, only level interrupt.

To enter any of the six sleep modes, the SE bit in SMCR must be written to logic one and a

SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select

which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, Standby, or Extended

Standby) will be activated by the SLEEP instruction. See Table 9-2 on page 44 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU

is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and

resumes execution from the instruction following SLEEP. The contents of the Register File and

SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,

the MCU wakes up and executes from the Reset Vector.

Table 9-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

S
o
ft
w

a
re

B
O

D
 D

is
a

b
le

Sleep Mode c
lk

C
P

U

c
lk

F
L
A

S
H

c
lk

IO

c
lk

A
D

C

c
lk

A
S

Y

M
a
in

 C
lo

ck

S
o
u
rc

e
 E

n
a

b
le

d

T
im

e
r

O
s
c
ill

a
to

r
E

n
a
b
le

d

IN
T

1
,
IN

T
0

 a
n
d

P
in

 C
h

a
n
g
e

T
W

I
A

d
d

re
s
s

M
a
tc

h

T
im

e
r2

S
P

M
/E

E
P

R
O

M
R

e
a

d
y

A
D

C

W
D

T

O
th

e
r

I/
O

Idle X X X X X(2) X X X X X X X

ADC Noise
Reduction

X X X X(2) X(3) X X(2) X X X

Power-down X(3) X X X

Power-save X X(2) X(3) X X X X

Standby(1) X X(3) X X X

Extended
Standby

X(2) X X(2) X(3) X X X X

40

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9.2 BOD Disable

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses, Table 27-7 on page 296,

the BOD is actively monitoring the power supply voltage during a sleep period. To save power, it

is possible to disable the BOD by software for some of the sleep modes, see Table 9-1 on page

39. The sleep mode power consumption will then be at the same level as when BOD is globally

disabled by fuses. If BOD is disabled in software, the BOD function is turned off immediately

after entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again.

This ensures safe operation in case the VCC level has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60

µs to ensure that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see

”MCUCR – MCU Control Register” on page 44. Writing this bit to one turns off the BOD in rele-

vant sleep modes, while a zero in this bit keeps BOD active. Default setting keeps BOD active,

i.e. BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see ”MCUCR –

MCU Control Register” on page 44.

9.3 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle

mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, 2-wire Serial

Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep

mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal

ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the

Analog Comparator interrupt is not required, the Analog Comparator can be powered down by

setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will

reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-

cally when this mode is entered.

9.4 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC

Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the 2-

wire Serial Interface address watch, Timer/Counter2(1), and the Watchdog to continue operating

(if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the other

clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If

the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the

ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a

Watchdog Interrupt, a Brown-out Reset, a 2-wire Serial Interface address match, a

Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0

or INT1 or a pin change interrupt can wake up the MCU from ADC Noise Reduction mode.

Note: 1. Timer/Counter2 will only keep running in asynchronous mode, see ”8-bit Timer/Counter2 with
PWM and Asynchronous Operation” on page 144 for details.

41

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9.5 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-

down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-

wire Serial Interface address watch, and the Watchdog continue operating (if enabled). Only an

External Reset, a Watchdog System Reset, a Watchdog Interrupt, a Brown-out Reset, a 2-wire

Serial Interface address match, an external level interrupt on INT0 or INT1, or a pin change

interrupt can wake up the MCU. This sleep mode basically halts all generated clocks, allowing

operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed

level must be held for some time to wake up the MCU. Refer to ”External Interrupts” on page 70

for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs

until the wake-up becomes effective. This allows the clock to restart and become stable after

having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the

Reset Time-out period, as described in ”Clock Sources” on page 27.

9.6 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-

save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from

either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding

Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in

SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save

mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save

mode. If Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is

stopped during sleep. If Timer/Counter2 is not using the synchronous clock, the clock source is

stopped during sleep. Note that even if the synchronous clock is running in Power-save, this

clock is only available for Timer/Counter2.

9.7 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the

SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down

with the exception that the Oscillator is kept running. From Standby mode, the device wakes up

in six clock cycles.

9.8 Extended Standby Mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the

SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to

Power-save with the exception that the Oscillator is kept running. From Extended Standby

mode, the device wakes up in six clock cycles.

42

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9.9 Power Reduction Register

The Power Reduction Register (PRR), see ”PRR – Power Reduction Register” on page 45, pro-

vides a method to stop the clock to individual peripherals to reduce power consumption. The

current state of the peripheral is frozen and the I/O registers can not be read or written.

Resources used by the peripheral when stopping the clock will remain occupied, hence the

peripheral should in most cases be disabled before stopping the clock. Waking up a module,

which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall

power consumption. In all other sleep modes, the clock is already stopped.

9.10 Minimizing Power Consumption

There are several possibilities to consider when trying to minimize the power consumption in an

AVR controlled system. In general, sleep modes should be used as much as possible, and the

sleep mode should be selected so that as few as possible of the device’s functions are operat-

ing. All functions not needed should be disabled. In particular, the following modules may need

special consideration when trying to achieve the lowest possible power consumption.

9.10.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-

abled before entering any sleep mode. When the ADC is turned off and on again, the next

conversion will be an extended conversion. Refer to ”Analog-to-Digital Converter” on page 250

for details on ADC operation.

9.10.2 Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering

ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,

the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up

to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all

sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep

mode. Refer to ”Analog Comparator” on page 246 for details on how to configure the Analog

Comparator.

9.10.3 Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If

the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep

modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-

nificantly to the total current consumption. Refer to ”Brown-out Detection” on page 48 for details

on how to configure the Brown-out Detector.

9.10.4 Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the

Analog Comparator or the ADC. If these modules are disabled as described in the sections

above, the internal voltage reference will be disabled and it will not be consuming power. When

turned on again, the user must allow the reference to start up before the output is used. If the

reference is kept on in sleep mode, the output can be used immediately. Refer to ”Internal Volt-

age Reference” on page 49 for details on the start-up time.

43

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9.10.5 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the

Watchdog Timer is enabled, it will be enabled in all sleep modes and hence always consume

power. In the deeper sleep modes, this will contribute significantly to the total current consump-

tion. Refer to ”Watchdog Timer” on page 50 for details on how to configure the Watchdog Timer.

9.10.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The

most important is then to ensure that no pins drive resistive loads. In sleep modes where both

the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will

be disabled. This ensures that no power is consumed by the input logic when not needed. In

some cases, the input logic is needed for detecting wake-up conditions, and it will then be

enabled. Refer to the section ”Digital Input Enable and Sleep Modes” on page 79 for details on

which pins are enabled. If the input buffer is enabled and the input signal is left floating or have

an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal

level close to VCC/2 on an input pin can cause significant current even in active mode. Digital

input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and

DIDR0). Refer to ”DIDR1 – Digital Input Disable Register 1” on page 249 and ”DIDR0 – Digital

Input Disable Register 0” on page 266 for details.

9.10.7 On-chip Debug System

If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode, the

main clock source is enabled and hence always consumes power. In the deeper sleep modes,

this will contribute significantly to the total current consumption.

44

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

9.11 Register Description

9.11.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

• Bits 7..4 Res: Reserved Bits

These bits are unused in the ATmega48PA/88PA/168PA/328P, and will always be read as zero.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 9-2.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 0 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP

instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of

the SLEEP instruction and to clear it immediately after waking up.

9.11.2 MCUCR – MCU Control Register

• Bit 6 – BODS: BOD Sleep

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 9-1

on page 39. Writing to the BODS bit is controlled by a timed sequence and an enable bit,

BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 9-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 External Standby(1)

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

45

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to

zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed

while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is

automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable

BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable

is controlled by a timed sequence.

9.11.3 PRR – Power Reduction Register

• Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When

waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 6 - PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2

is 0). When the Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0

is enabled, operation will continue like before the shutdown.

• Bit 4 - Res: Reserved bit

This bit is reserved in ATmega48PA/88PA/168PA/328P and will always read as zero.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1

is enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

If using debugWIRE On-chip Debug System, this bit should not be written to one.

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to

the module. When waking up the SPI again, the SPI should be re initialized to ensure proper

operation.

• Bit 1 - PRUSART0: Power Reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When

waking up the USART again, the USART should be re initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.

The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

46

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

10. System Control and Reset

10.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution

from the Reset Vector. For the ATmega168PA, the instruction placed at the Reset Vector must

be a JMP – Absolute Jump – instruction to the reset handling routine. For the ATmega48PA and

ATmega88PA, the instruction placed at the Reset Vector must be an RJMP – Relative Jump –

instruction to the reset handling routine. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these locations. This

is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in

the Boot section or vice versa (ATmega88PA/168PA only). The circuit diagram in Figure 10-1 on

page 47 shows the reset logic. Table 28-3 on page 318 defines the electrical parameters of the

reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes

active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal

reset. This allows the power to reach a stable level before normal operation starts. The time-out

period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-

ferent selections for the delay period are presented in ”Clock Sources” on page 27.

10.2 Reset Sources

The ATmega48PA/88PA/168PA/328P has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset

threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than

the minimum pulse length.

• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and the

Watchdog System Reset mode is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out Reset

threshold (VBOT) and the Brown-out Detector is enabled.

47

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 10-1. Reset Logic

10.3 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level

is defined in ”System and Reset Characteristics” on page 318. The POR is activated whenever

VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as

well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the

Power-on Reset threshold voltage invokes the delay counter, which determines how long the

device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,

when VCC decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to VCC

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK

TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit

RSTDISBL

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

48

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 10-3. MCU Start-up, RESET Extended Externally

10.4 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the

minimum pulse width (see ”System and Reset Characteristics” on page 318) will generate a

reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the

delay counter starts the MCU after the Time-out period – tTOUT – has expired. The External Reset

can be disabled by the RSTDISBL fuse, see Table 27-7 on page 296.

Figure 10-4. External Reset During Operation

10.5 Brown-out Detection

ATmega48PA/88PA/168PA/328P has an On-chip Brown-out Detection (BOD) circuit for moni-

toring the VCC level during operation by comparing it to a fixed trigger level. The trigger level for

the BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure

spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as

VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.When the BOD is enabled, and VCC

decreases to a value below the trigger level (VBOT- in Figure 10-5 on page 49), the Brown-out

Reset is immediately activated. When VCC increases above the trigger level (VBOT+ in Figure 10-

5 on page 49), the delay counter starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-

ger than tBOD given in ”System and Reset Characteristics” on page 318.

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

CC

49

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 10-5. Brown-out Reset During Operation

10.6 Watchdog System Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On

the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to

page 50 for details on operation of the Watchdog Timer.

Figure 10-6. Watchdog System Reset During Operation

10.7 Internal Voltage Reference

ATmega48PA/88PA/168PA/328P features an internal bandgap reference. This reference is

used for Brown-out Detection, and it can be used as an input to the Analog Comparator or the

ADC.

10.7.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The

start-up time is given in ”System and Reset Characteristics” on page 318. To save power, the

reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user

must always allow the reference to start up before the output from the Analog Comparator or

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-

VBOT+

tTOUT

CK

CC

50

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three

conditions above to ensure that the reference is turned off before entering Power-down mode.

10.8 Watchdog Timer

10.8.1 Features
• Clocked from separate On-chip Oscillator

• 3 Operating modes

– Interrupt

– System Reset

– Interrupt and System Reset

• Selectable Time-out period from 16ms to 8s

• Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

10.8.2 Overview

ATmega48PA/88PA/168PA/328P has an Enhanced Watchdog Timer (WDT). The WDT is a

timer counting cycles of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or a

system reset when the counter reaches a given time-out value. In normal operation mode, it is

required that the system uses the WDR - Watchdog Timer Reset - instruction to restart the coun-

ter before the time-out value is reached. If the system doesn't restart the counter, an interrupt or

system reset will be issued.

Figure 10-7. Watchdog Timer

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used

to wake the device from sleep-modes, and also as a general system timer. One example is to

limit the maximum time allowed for certain operations, giving an interrupt when the operation

has run longer than expected. In System Reset mode, the WDT gives a reset when the timer

expires. This is typically used to prevent system hang-up in case of runaway code. The third

mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-

rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown

by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-

tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt

128kHz
OSCILLATOR

O
S

C
/2

K

O
S

C
/4

K

O
S

C
/8

K

O
S

C
/1

6K

O
S

C
/3

2K

O
S

C
/6

4K

O
S

C
/1

28
K

O
S

C
/2

56
K

O
S

C
/5

12
K

O
S

C
/1

02
4K

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT

51

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-

tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and

changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watch-

dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts

globally) so that no interrupts will occur during the execution of these functions.

52

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out

condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not

set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this

situation, the application software should always clear the Watchdog System Reset Flag

(WDRF) and the WDE control bit in the initialisation routine, even if the Watchdog is not in use.

Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (0xff & (0<<WDRF))

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

lds r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; Turn off WDT

ldi r16, (0<<WDE)

sts WDTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

53

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The following code example shows one assembly and one C function for changing the time-out

value of the Watchdog Timer.

Note: 1. See ”About Code Examples” on page 7.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change

in the WDP bits can result in a time-out when switching to a shorter time-out period.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCSR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed equence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

54

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

10.9 Register Description

10.9.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 7..4: Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 3 – WDRF: Watchdog System Reset Flag

This bit is set if a Watchdog System Reset occurs. The bit is reset by a Power-on Reset, or by

writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then

Reset the MCUSR as early as possible in the program. If the register is cleared before another

reset occurs, the source of the reset can be found by examining the Reset Flags.

10.9.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-

ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt

handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in

SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is

enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt

Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs. If

WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in the

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

55

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE and

WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is useful for

keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and System

Reset Mode, WDIE must be set after each interrupt. This should however not be done within the

interrupt service routine itself, as this might compromise the safety-function of the Watchdog

System Reset mode. If the interrupt is not executed before the next time-out, a System Reset

will be applied.

Note: 1. WDTON Fuse set to “0” means programmed and “1” means unprogrammed.

• Bit 4 - WDCE: Watchdog Change Enable

This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,

and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is

set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-

ditions causing failure, and a safe start-up after the failure.

• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1 and 0

The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-

ning. The different prescaling values and their corresponding time-out periods are shown in

Table 10-2 on page 55.

Table 10-1. Watchdog Timer Configuration

WDTON(1) WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1
Interrupt and System Reset
Mode

Interrupt, then go to System
Reset Mode

0 x x System Reset Mode Reset

Table 10-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0

Number of WDT Oscillator

Cycles

Typical Time-out at

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32 ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125 s

0 1 0 0 32K (32768) cycles 0.25 s

0 1 0 1 64K (65536) cycles 0.5 s

0 1 1 0 128K (131072) cycles 1.0 s

56

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0 1 1 1 256K (262144) cycles 2.0 s

1 0 0 0 512K (524288) cycles 4.0 s

1 0 0 1 1024K (1048576) cycles 8.0 s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Table 10-2. Watchdog Timer Prescale Select (Continued)

WDP3 WDP2 WDP1 WDP0

Number of WDT Oscillator

Cycles

Typical Time-out at

VCC = 5.0V

57

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

11. Interrupts
This sect ion descr ibes the spec i f ics o f the in terrupt handl ing as per formed in

ATmega48PA/88PA/168PA/328P. For a general explanation of the AVR interrupt handling, refer

to ”Reset and Interrupt Handling” on page 14.

The interrupt vectors in ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P are

generally the same, with the following differences:

• Each Interrupt Vector occupies two instruction words in ATmega168PA and ATmega328P, and

one instruction word in ATmega48PA and ATmega88PA.

• ATmega48PA does not have a separate Boot Loader Section. In ATmega88PA,

ATmega168PA and ATmega328P, the Reset Vector is affected by the BOOTRST fuse, and the

Interrupt Vector start address is affected by the IVSEL bit in MCUCR.

11.1 Interrupt Vectors in ATmega48PA

Table 11-1. Reset and Interrupt Vectors in ATmega48PA

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

58

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega48PA is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0x008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16

0x01E sei ; Enable interrupts

0x01F <instr> xxx

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready

Table 11-1. Reset and Interrupt Vectors in ATmega48PA (Continued)

Vector No. Program Address Source Interrupt Definition

59

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

11.2 Interrupt Vectors in ATmega88PA

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see ”Boot Loader Sup-
port – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P” on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

Table 11-3 on page 60 shows reset and Interrupt Vectors placement for the various combina-

tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these locations. This

is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in

the Boot section or vice versa.

Table 11-2. Reset and Interrupt Vectors in ATmega88PA

Vector No.

Program

Address(2) Source Interrupt Definition

1 0x000(1) RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready

60

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. The Boot Reset Address is shown in Table 26-7 on page 289. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega88PA is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0X008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16
0x01E sei ; Enable interrupts

0x01F <instr> xxx

Table 11-3. Reset and Interrupt Vectors Placement in ATmega88PA(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x001

1 1 0x000 Boot Reset Address + 0x001

0 0 Boot Reset Address 0x001

0 1 Boot Reset Address Boot Reset Address + 0x001

61

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the

IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and

general program setup for the Reset and Interrupt Vector Addresses in ATmega88PA is:

Address Labels Code Comments

0x000 RESET: ldi r16,high(RAMEND); Main program start

0x001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x002 ldi r16,low(RAMEND)

0x003 out SPL,r16
0x004 sei ; Enable interrupts

0x005 <instr> xxx

;

.org 0xC01

0xC01 rjmp EXT_INT0 ; IRQ0 Handler

0xC02 rjmp EXT_INT1 ; IRQ1 Handler

... ;

0xC19 rjmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most

typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega88PA is:

Address Labels Code Comments

.org 0x001

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

... ;

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0xC00
0xC00 RESET: ldi r16,high(RAMEND); Main program start

0xC01 out SPH,r16 ; Set Stack Pointer to top of RAM

0xC02 ldi r16,low(RAMEND)

0xC03 out SPL,r16
0xC04 sei ; Enable interrupts

0xC05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL

bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general

program setup for the Reset and Interrupt Vector Addresses in ATmega88PA is:

Address Labels Code Comments

;

.org 0xC00
0xC00 rjmp RESET ; Reset handler

0xC01 rjmp EXT_INT0 ; IRQ0 Handler

0xC02 rjmp EXT_INT1 ; IRQ1 Handler

... ;

0xC19 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0xC1A RESET: ldi r16,high(RAMEND); Main program start

62

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0xC1B out SPH,r16 ; Set Stack Pointer to top of RAM

0xC1C ldi r16,low(RAMEND)

0xC1D out SPL,r16
0xC1E sei ; Enable interrupts

0xC1F <instr> xxx

11.3 Interrupt Vectors in ATmega168PA

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see ”Boot Loader Sup-
port – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P” on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

Table 11-4. Reset and Interrupt Vectors in ATmega168PA

VectorNo.

Program

Address(2) Source Interrupt Definition

1 0x0000(1) RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A PCINT2 Pin Change Interrupt Request 2

7 0x000C WDT Watchdog Time-out Interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x0012 TIMER2 OVF Timer/Counter2 Overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x0018 TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x001A TIMER1 OVF Timer/Counter1 Overflow

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow

18 0x0022 SPI, STC SPI Serial Transfer Complete

19 0x0024 USART, RX USART Rx Complete

20 0x0026 USART, UDRE USART, Data Register Empty

21 0x0028 USART, TX USART, Tx Complete

22 0x002A ADC ADC Conversion Complete

23 0x002C EE READY EEPROM Ready

24 0x002E ANALOG COMP Analog Comparator

25 0x0030 TWI 2-wire Serial Interface

26 0x0032 SPM READY Store Program Memory Ready

63

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 11-5 on page 63 shows reset and Interrupt Vectors placement for the various combina-

tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these locations. This

is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in

the Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 26-7 on page 289. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega168PA is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

0x0006 jmp PCINT0 ; PCINT0 Handler

0x0008 jmp PCINT1 ; PCINT1 Handler

0x000A jmp PCINT2 ; PCINT2 Handler

0x000C jmp WDT ; Watchdog Timer Handler

0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler

0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler

0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler

0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler

0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler

0x001A jmp TIM1_OVF ; Timer1 Overflow Handler

0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler

0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler

0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0022 jmp SPI_STC ; SPI Transfer Complete Handler

0x0024 jmp USART_RXC ; USART, RX Complete Handler

0x0026 jmp USART_UDRE ; USART, UDR Empty Handler

0x0028 jmp USART_TXC ; USART, TX Complete Handler

0x002A jmp ADC ; ADC Conversion Complete Handler

0x002C jmp EE_RDY ; EEPROM Ready Handler

0x002E jmp ANA_COMP ; Analog Comparator Handler

0x0030 jmp TWI ; 2-wire Serial Interface Handler

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x0033RESET: ldi r16, high(RAMEND); Main program start

Table 11-5. Reset and Interrupt Vectors Placement in ATmega168PA(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x002

1 1 0x000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x002

0 1 Boot Reset Address Boot Reset Address + 0x0002

64

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0035 ldi r16, low(RAMEND)

0x0036 out SPL,r16

0x0037 sei ; Enable interrupts

0x0038 <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the

IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and

general program setup for the Reset and Interrupt Vector Addresses in ATmega168PA is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x1C02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most

typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega168PA is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL

bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general

program setup for the Reset and Interrupt Vector Addresses in ATmega168PA is:

Address Labels Code Comments

;

65

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

.org 0x1C00
0x1C00 jmp RESET ; Reset handler

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x1C33 RESET: ldi r16,high(RAMEND); Main program start

0x1C34 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C35 ldi r16,low(RAMEND)

0x1C36 out SPL,r16
0x1C37 sei ; Enable interrupts

0x1C38 <instr> xxx

11.4 Interrupt Vectors in ATmega328P

Table 11-6. Reset and Interrupt Vectors in ATmega328P

VectorNo.

Program

Address(2) Source Interrupt Definition

1 0x0000(1) RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A PCINT2 Pin Change Interrupt Request 2

7 0x000C WDT Watchdog Time-out Interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x0012 TIMER2 OVF Timer/Counter2 Overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x0018 TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x001A TIMER1 OVF Timer/Counter1 Overflow

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow

18 0x0022 SPI, STC SPI Serial Transfer Complete

19 0x0024 USART, RX USART Rx Complete

20 0x0026 USART, UDRE USART, Data Register Empty

21 0x0028 USART, TX USART, Tx Complete

22 0x002A ADC ADC Conversion Complete

66

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see ”Boot Loader Sup-
port – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P” on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

Table 11-7 on page 66 shows reset and Interrupt Vectors placement for the various combina-

tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these locations. This

is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in

the Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 26-7 on page 289. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega328P is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

0x0006 jmp PCINT0 ; PCINT0 Handler

0x0008 jmp PCINT1 ; PCINT1 Handler

0x000A jmp PCINT2 ; PCINT2 Handler

0x000C jmp WDT ; Watchdog Timer Handler

0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler

0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler

0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler

0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler

0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler

0x001A jmp TIM1_OVF ; Timer1 Overflow Handler

0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler

0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler

23 0x002C EE READY EEPROM Ready

24 0x002E ANALOG COMP Analog Comparator

25 0x0030 TWI 2-wire Serial Interface

26 0x0032 SPM READY Store Program Memory Ready

Table 11-6. Reset and Interrupt Vectors in ATmega328P (Continued)

VectorNo.

Program

Address(2) Source Interrupt Definition

Table 11-7. Reset and Interrupt Vectors Placement in ATmega328P(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x002

1 1 0x000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x002

0 1 Boot Reset Address Boot Reset Address + 0x0002

67

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0022 jmp SPI_STC ; SPI Transfer Complete Handler

0x0024 jmp USART_RXC ; USART, RX Complete Handler

0x0026 jmp USART_UDRE ; USART, UDR Empty Handler

0x0028 jmp USART_TXC ; USART, TX Complete Handler

0x002A jmp ADC ; ADC Conversion Complete Handler

0x002C jmp EE_RDY ; EEPROM Ready Handler

0x002E jmp ANA_COMP ; Analog Comparator Handler

0x0030 jmp TWI ; 2-wire Serial Interface Handler

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x0033RESET: ldi r16, high(RAMEND); Main program start

0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0035 ldi r16, low(RAMEND)

0x0036 out SPL,r16

0x0037 sei ; Enable interrupts

0x0038 <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the

IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and

general program setup for the Reset and Interrupt Vector Addresses in ATmega328P is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x3C02

0x3C02 jmp EXT_INT0 ; IRQ0 Handler

0x3C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x3C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most

typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega328P is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x3C00
0x3C00 RESET: ldi r16,high(RAMEND); Main program start

68

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0x3C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x3C02 ldi r16,low(RAMEND)

0x3C03 out SPL,r16
0x3C04 sei ; Enable interrupts

0x3C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL

bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general

program setup for the Reset and Interrupt Vector Addresses in ATmega328P is:

Address Labels Code Comments

;

.org 0x3C00
0x3C00 jmp RESET ; Reset handler

0x3C02 jmp EXT_INT0 ; IRQ0 Handler

0x3C04 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x3C32 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x3C33 RESET: ldi r16,high(RAMEND); Main program start

0x3C34 out SPH,r16 ; Set Stack Pointer to top of RAM

0x3C35 ldi r16,low(RAMEND)

0x3C36 out SPL,r16
0x3C37 sei ; Enable interrupts

0x3C38 <instr> xxx

11.5 Register Description

11.5.1 Moving Interrupts Between Application and Boot Space, ATmega88PA, ATmega168PA and ATmega328P

The MCU Control Register controls the placement of the Interrupt Vector table.

11.5.2 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash

memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot

Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-

mined by the BOOTSZ Fuses. Refer to the section ”Boot Loader Support – Read-While-Write

Self-Programming, ATmega88PA, ATmega168PA and ATmega328P” on page 277 for details.

To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be fol-

lowed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

69

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section ”Boot Loader Support – Read-While-
Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P” on page 277 for
details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by

hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable

interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ldi r16, (1<<IVSEL)

out MCUCR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL);

}

70

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

12. External Interrupts
The External Interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23..0 pins.

Observe that, if enabled, the interrupts will trigger even if the INT0 and INT1 or PCINT23..0 pins

are configured as outputs. This feature provides a way of generating a software interrupt. The

pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles. The pin change

interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles. The pin change interrupt PCI0

will trigger if any enabled PCINT7..0 pin toggles. The PCMSK2, PCMSK1 and PCMSK0 Regis-

ters control which pins contribute to the pin change interrupts. Pin change interrupts on

PCINT23..0 are detected asynchronously. This implies that these interrupts can be used for

waking the part also from sleep modes other than Idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge or a low level. This is

set up as indicated in the specification for the External Interrupt Control Register A – EICRA.

When the INT0 or INT1 interrupts are enabled and are configured as level triggered, the inter-

rupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge

interrupts on INT0 or INT1 requires the presence of an I/O clock, described in ”Clock Systems

and their Distribution” on page 26. Low level interrupt on INT0 and INT1 is detected asynchro-

nously. This implies that this interrupt can be used for waking the part also from sleep modes

other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level

must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If

the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-

rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described

in ”System Clock and Clock Options” on page 26.

12.1 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 12-1.

Figure 12-1. Timing of pin change interrupts

clk

PCINT(0)

pin_lat

pin_sync

pcint_in_(0)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync

pcint_syn
pin_lat

D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0)
0

x

71

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

12.2 Register Description

12.2.1 EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 7..4 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corre-

sponding interrupt mask are set. The level and edges on the external INT1 pin that activate the

interrupt are defined in Table 12-1. The value on the INT1 pin is sampled before detecting

edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will

generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level

interrupt is selected, the low level must be held until the completion of the currently executing

instruction to generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-

sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the

interrupt are defined in Table 12-2. The value on the INT0 pin is sampled before detecting

edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will

generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level

interrupt is selected, the low level must be held until the completion of the currently executing

instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12-1. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Table 12-2. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

72

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

12.2.2 EIMSK – External Interrupt Mask Register

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 1 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-

nal pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the

External Interrupt Control Register A (EICRA) define whether the external interrupt is activated

on rising and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause an

interrupt request even if INT1 is configured as an output. The corresponding interrupt of External

Interrupt Request 1 is executed from the INT1 Interrupt Vector.

• Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-

nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the

External Interrupt Control Register A (EICRA) define whether the external interrupt is activated

on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an

interrupt request even if INT0 is configured as an output. The corresponding interrupt of External

Interrupt Request 0 is executed from the INT0 Interrupt Vector.

12.2.3 EIFR – External Interrupt Flag Register

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 1 – INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set

(one). If the I-bit in SREG and the INT1 bit in EIMSK are set (one), the MCU will jump to the cor-

responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.

Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared

when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set

(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-

responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.

Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared

when INT0 is configured as a level interrupt.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – – INT1 INT0 EIMSK

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

73

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

12.2.4 PCICR – Pin Change Interrupt Control Register

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an inter-

rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI2

Interrupt Vector. PCINT23..16 pins are enabled individually by the PCMSK2 Register.

• Bit 1 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 1 is enabled. Any change on any enabled PCINT14..8 pin will cause an inter-

rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1

Interrupt Vector. PCINT14..8 pins are enabled individually by the PCMSK1 Register.

• Bit 0 - PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.

The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Inter-

rupt Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

12.2.5 PCIFR – Pin Change Interrupt Flag Register

• Bit 7..3 - Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set

(one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

• Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT14..8 pin triggers an interrupt request, PCIF1 becomes set

(one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

74

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 0 - PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set

(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

12.2.6 PCMSK2 – Pin Change Mask Register 2

• Bit 7..0 – PCINT23..16: Pin Change Enable Mask 23..16

Each PCINT23..16-bit selects whether pin change interrupt is enabled on the corresponding I/O

pin. If PCINT23..16 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on

the corresponding I/O pin. If PCINT23..16 is cleared, pin change interrupt on the corresponding

I/O pin is disabled.

12.2.7 PCMSK1 – Pin Change Mask Register 1

• Bit 7 – Res: Reserved Bit

This bit is an unused bit in the ATmega48PA/88PA/168PA/328P, and will always read as zero.

• Bit 6..0 – PCINT14..8: Pin Change Enable Mask 14..8

Each PCINT14..8-bit selects whether pin change interrupt is enabled on the corresponding I/O

pin. If PCINT14..8 is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled on

the corresponding I/O pin. If PCINT14..8 is cleared, pin change interrupt on the corresponding

I/O pin is disabled.

12.2.8 PCMSK0 – Pin Change Mask Register 0

• Bit 7..0 – PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding I/O

pin. If PCINT7..0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the

corresponding I/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin

is disabled.

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

75

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13. I/O-Ports

13.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.

This means that the direction of one port pin can be changed without unintentionally changing

the direction of any other pin with the SBI and CBI instructions. The same applies when chang-

ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as

input). Each output buffer has symmetrical drive characteristics with both high sink and source

capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-

vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have

protection diodes to both VCC and Ground as indicated in Figure 13-1. Refer to ”Electrical Char-

acteristics” on page 313 for a complete list of parameters.

Figure 13-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-

sents the numbering letter for the port, and a lower case “n” represents the bit number. However,

when using the register or bit defines in a program, the precise form must be used. For example,

PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-

ters and bit locations are listed in ”Register Description” on page 92.

Three I/O memory address locations are allocated for each port, one each for the Data Register

– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins

I/O location is read only, while the Data Register and the Data Direction Register are read/write.

However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-

ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the

pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in ”Ports as General Digital I/O” on page

76. Most port pins are multiplexed with alternate functions for the peripheral features on the

device. How each alternate function interferes with the port pin is described in ”Alternate Port

Functions” on page 80. Refer to the individual module sections for a full description of the alter-

nate functions.

C
pin

Logic

R
pu

See Figure
"General Digital I/O" for

Details

Pxn

76

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note that enabling the alternate function of some of the port pins does not affect the use of the

other pins in the port as general digital I/O.

13.2 Ports as General Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2 shows a func-

tional description of one I/O-port pin, here generically called Pxn.

Figure 13-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

13.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in ”Register

Description” on page 92, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits

at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,

Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is

activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to

be configured as an output pin. The port pins are tri-stated when reset condition becomes active,

even if no clocks are running.

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

77

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven

high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port

pin is driven low (zero).

13.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.

Note that the SBI instruction can be used to toggle one single bit in a port.

13.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}

= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output

low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-

able, as a high-impedance environment will not notice the difference between a strong high

driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to dis-

able all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user

must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}

= 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

13.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the

PINxn Register bit. As shown in Figure 13-2, the PINxn Register bit and the preceding latch con-

stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value

near the edge of the internal clock, but it also introduces a delay. Figure 13-3 shows a timing dia-

gram of the synchronization when reading an externally applied pin value. The maximum and

minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 13-1. Port Pin Configurations

DDxn PORTxn

PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

78

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 13-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch

is closed when the clock is low, and goes transparent when the clock is high, as indicated by the

shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock

goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-

cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed

between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-

cated in Figure 13-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of

the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define

the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

values are read back again, but as previously discussed, a nop instruction is included to be able

to read back the value recently assigned to some of the pins.

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

tpd

79

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

13.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the

Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in

Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if

some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt

request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various

other alternate functions as described in ”Alternate Port Functions” on page 80.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as

“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt

is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

above mentioned Sleep mode, as the clamping in these sleep mode produces the requested

logic change.

13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even

though most of the digital inputs are disabled in the deep sleep modes as described above, float-

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

80

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

ing inputs should be avoided to reduce current consumption in all other modes where the digital

inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.

In this case, the pull-up will be disabled during reset. If low power consumption during reset is

important, it is recommended to use an external pull-up or pull-down. Connecting unused pins

directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is

accidentally configured as an output.

13.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 13-5

shows how the port pin control signals from the simplified Figure 13-2 on page 76 can be over-

ridden by alternate functions. The overriding signals may not be present in all port pins, but the

figure serves as a generic description applicable to all port pins in the AVR microcontroller

family.

Figure 13-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
A
TA

 B
U

S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx

81

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-

ure 13-5 on page 80 are not shown in the succeeding tables. The overriding signals are

generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the

overriding signals to the alternate function. Refer to the alternate function description for further

details.

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the Schmitt Trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

82

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13.3.1 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 13-3.

The alternate pin configuration is as follows:

• XTAL2/TOSC2/PCINT7 – Port B, Bit 7

XTAL2: Chip clock Oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency

crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

TOSC2: Timer Oscillator pin 2. Used only if internal calibrated RC Oscillator is selected as chip

clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the

AS2 bit in ASSR is set (one) and the EXCLK bit is cleared (zero) to enable asynchronous clock-

ing of Timer/Counter2 using the Crystal Oscillator, pin PB7 is disconnected from the port, and

becomes the inverting output of the Oscillator amplifier. In this mode, a crystal Oscillator is con-

nected to this pin, and the pin cannot be used as an I/O pin.

PCINT7: Pin Change Interrupt source 7. The PB7 pin can serve as an external interrupt source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

• XTAL1/TOSC1/PCINT6 – Port B, Bit 6

XTAL1: Chip clock Oscillator pin 1. Used for all chip clock sources except internal calibrated RC

Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

TOSC1: Timer Oscillator pin 1. Used only if internal calibrated RC Oscillator is selected as chip

clock source, and the asynchronous timer is enabled by the correct setting in ASSR. When the

Table 13-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
XTAL2 (Chip Clock Oscillator pin 2)
TOSC2 (Timer Oscillator pin 2)
PCINT7 (Pin Change Interrupt 7)

PB6
XTAL1 (Chip Clock Oscillator pin 1 or External clock input)
TOSC1 (Timer Oscillator pin 1)
PCINT6 (Pin Change Interrupt 6)

PB5
SCK (SPI Bus Master clock Input)
PCINT5 (Pin Change Interrupt 5)

PB4
MISO (SPI Bus Master Input/Slave Output)
PCINT4 (Pin Change Interrupt 4)

PB3
MOSI (SPI Bus Master Output/Slave Input)
OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT3 (Pin Change Interrupt 3)

PB2
SS (SPI Bus Master Slave select)
OC1B (Timer/Counter1 Output Compare Match B Output)
PCINT2 (Pin Change Interrupt 2)

PB1
OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT1 (Pin Change Interrupt 1)

PB0
ICP1 (Timer/Counter1 Input Capture Input)
CLKO (Divided System Clock Output)
PCINT0 (Pin Change Interrupt 0)

83

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2, pin PB6 is dis-

connected from the port, and becomes the input of the inverting Oscillator amplifier. In this

mode, a crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

PCINT6: Pin Change Interrupt source 6. The PB6 pin can serve as an external interrupt source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

• SCK/PCINT5 – Port B, Bit 5

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a

Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is

enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is forced

by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin Change Interrupt source 5. The PB5 pin can serve as an external interrupt source.

• MISO/PCINT4 – Port B, Bit 4

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a

Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is

enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced

by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt source.

• MOSI/OC2/PCINT3 – Port B, Bit 3

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a

Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is

enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is forced

by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, Output Compare Match Output: The PB3 pin can serve as an external output for the

Timer/Counter2 Compare Match. The PB3 pin has to be configured as an output (DDB3 set

(one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer

function.

PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt source.

• SS/OC1B/PCINT2 – Port B, Bit 2

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input

regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.

When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When

the pin is forced by the SPI to be an input, the pull-up can still be controlled by the PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the

Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set

(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer

function.

PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt source.

• OC1A/PCINT1 – Port B, Bit 1

OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the

Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set

84

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer

function.

PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0

ICP1, Input Capture Pin: The PB0 pin can act as an Input Capture Pin for Timer/Counter1.

CLKO, Divided System Clock: The divided system clock can be output on the PB0 pin. The

divided system clock will be output if the CKOUT Fuse is programmed, regardless of the

PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt source.

Table 13-4 and Table 13-5 on page 85 relate the alternate functions of Port B to the overriding

signals shown in Figure 13-5 on page 80. SPI MSTR INPUT and SPI SLAVE OUTPUT consti-

tute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Notes: 1. INTRC means that one of the internal RC Oscillators are selected (by the CKSEL fuses),
EXTCK means that external clock is selected (by the CKSEL fuses)

Table 13-4. Overriding Signals for Alternate Functions in PB7..PB4

Signal

Name

PB7/XTAL2/

TOSC2/PCINT7(1)
PB6/XTAL1/

TOSC1/PCINT6(1)
PB5/SCK/

PCINT5

PB4/MISO/

PCINT4

PUOE
INTRC • EXTCK+
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

PUOV 0 0 PORTB5 • PUD PORTB4 • PUD

DDOE
INTRC • EXTCK+
AS2

INTRC + AS2 SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE • MSTR SPE • MSTR

PVOV 0 0 SCK OUTPUT
SPI SLAVE
OUTPUT

DIEOE
INTRC • EXTCK +
AS2 + PCINT7 •
PCIE0

INTRC + AS2 +
PCINT6 • PCIE0

PCINT5 • PCIE0 PCINT4 • PCIE0

DIEOV
(INTRC + EXTCK) •
AS2

INTRC • AS2 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT

SCK INPUT

PCINT4 INPUT

SPI MSTR INPUT

AIO Oscillator Output
Oscillator/Clock
Input

– –

85

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13.3.2 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 13-6.

Table 13-5. Overriding Signals for Alternate Functions in PB3..PB0

Signal

Name

PB3/MOSI/

OC2/PCINT3

PB2/SS/

OC1B/PCINT2

PB1/OC1A/

PCINT1

PB0/ICP1/

PCINT0

PUOE SPE • MSTR SPE • MSTR 0 0

PUOV PORTB3 • PUD PORTB2 • PUD 0 0

DDOE SPE • MSTR SPE • MSTR 0 0

DDOV 0 0 0 0

PVOE
SPE • MSTR +
OC2A ENABLE

OC1B ENABLE OC1A ENABLE 0

PVOV
SPI MSTR OUTPUT
+ OC2A

OC1B OC1A 0

DIEOE PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT

SPI SLAVE INPUT

PCINT2 INPUT

SPI SS
PCINT1 INPUT

PCINT0 INPUT

ICP1 INPUT

AIO – – – –

Table 13-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC6
RESET (Reset pin)
PCINT14 (Pin Change Interrupt 14)

PC5
ADC5 (ADC Input Channel 5)
SCL (2-wire Serial Bus Clock Line)
PCINT13 (Pin Change Interrupt 13)

PC4
ADC4 (ADC Input Channel 4)
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT12 (Pin Change Interrupt 12)

PC3
ADC3 (ADC Input Channel 3)
PCINT11 (Pin Change Interrupt 11)

PC2
ADC2 (ADC Input Channel 2)
PCINT10 (Pin Change Interrupt 10)

PC1
ADC1 (ADC Input Channel 1)
PCINT9 (Pin Change Interrupt 9)

PC0
ADC0 (ADC Input Channel 0)
PCINT8 (Pin Change Interrupt 8)

86

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The alternate pin configuration is as follows:

• RESET/PCINT14 – Port C, Bit 6

RESET, Reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal I/O

pin, and the part will have to rely on Power-on Reset and Brown-out Reset as its reset sources.

When the RSTDISBL Fuse is unprogrammed, the reset circuitry is connected to the pin, and the

pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: Pin Change Interrupt source 14. The PC6 pin can serve as an external interrupt

source.

• SCL/ADC5/PCINT13 – Port C, Bit 5

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 2-

wire Serial Interface, pin PC5 is disconnected from the port and becomes the Serial Clock I/O

pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress

spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with

slew-rate limitation.

PC5 can also be used as ADC input Channel 5. Note that ADC input channel 5 uses digital

power.

PCINT13: Pin Change Interrupt source 13. The PC5 pin can serve as an external interrupt

source.

• SDA/ADC4/PCINT12 – Port C, Bit 4

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the 2-wire

Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data I/O pin for

the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes

shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with slew-

rate limitation.

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital

power.

PCINT12: Pin Change Interrupt source 12. The PC4 pin can serve as an external interrupt

source.

• ADC3/PCINT11 – Port C, Bit 3

PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog

power.

PCINT11: Pin Change Interrupt source 11. The PC3 pin can serve as an external interrupt

source.

• ADC2/PCINT10 – Port C, Bit 2

PC2 can also be used as ADC input Channel 2. Note that ADC input channel 2 uses analog

power.

PCINT10: Pin Change Interrupt source 10. The PC2 pin can serve as an external interrupt

source.

87

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• ADC1/PCINT9 – Port C, Bit 1

PC1 can also be used as ADC input Channel 1. Note that ADC input channel 1 uses analog

power.

PCINT9: Pin Change Interrupt source 9. The PC1 pin can serve as an external interrupt source.

• ADC0/PCINT8 – Port C, Bit 0

PC0 can also be used as ADC input Channel 0. Note that ADC input channel 0 uses analog

power.

PCINT8: Pin Change Interrupt source 8. The PC0 pin can serve as an external interrupt source.

Table 13-7 and Table 13-8 relate the alternate functions of Port C to the overriding signals

shown in Figure 13-5 on page 80.

Note: 1. When enabled, the 2-wire Serial Interface enables slew-rate controls on the output pins PC4
and PC5. This is not shown in the figure. In addition, spike filters are connected between the
AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 13-7. Overriding Signals for Alternate Functions in PC6..PC4(1)

Signal

Name PC6/RESET/PCINT14 PC5/SCL/ADC5/PCINT13 PC4/SDA/ADC4/PCINT12

PUOE RSTDISBL TWEN TWEN

PUOV 1 PORTC5 • PUD PORTC4 • PUD

DDOE RSTDISBL TWEN TWEN

DDOV 0 SCL_OUT SDA_OUT

PVOE 0 TWEN TWEN

PVOV 0 0 0

DIEOE
RSTDISBL + PCINT14 •
PCIE1

PCINT13 • PCIE1 + ADC5D PCINT12 • PCIE1 + ADC4D

DIEOV RSTDISBL PCINT13 • PCIE1 PCINT12 • PCIE1

DI PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO RESET INPUT ADC5 INPUT / SCL INPUT ADC4 INPUT / SDA INPUT

88

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13.3.3 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-9.

Table 13-8. Overriding Signals for Alternate Functions in PC3..PC0

Signal

Name

PC3/ADC3/

PCINT11

PC2/ADC2/

PCINT10

PC1/ADC1/

PCINT9

PC0/ADC0/

PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11 • PCIE1 +
ADC3D

PCINT10 • PCIE1 +
ADC2D

PCINT9 • PCIE1 +
ADC1D

PCINT8 • PCIE1 +
ADC0D

DIEOV PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 • PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 13-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (Analog Comparator Negative Input)
PCINT23 (Pin Change Interrupt 23)

PD6
AIN0 (Analog Comparator Positive Input)
OC0A (Timer/Counter0 Output Compare Match A Output)
PCINT22 (Pin Change Interrupt 22)

PD5
T1 (Timer/Counter 1 External Counter Input)
OC0B (Timer/Counter0 Output Compare Match B Output)
PCINT21 (Pin Change Interrupt 21)

PD4
XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

PD3
INT1 (External Interrupt 1 Input)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT19 (Pin Change Interrupt 19)

PD2
INT0 (External Interrupt 0 Input)
PCINT18 (Pin Change Interrupt 18)

PD1
TXD (USART Output Pin)
PCINT17 (Pin Change Interrupt 17)

PD0
RXD (USART Input Pin)
PCINT16 (Pin Change Interrupt 16)

89

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up

switched off to avoid the digital port function from interfering with the function of the Analog

Comparator.

PCINT23: Pin Change Interrupt source 23. The PD7 pin can serve as an external interrupt

source.

• AIN0/OC0A/PCINT22 – Port D, Bit 6

AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up

switched off to avoid the digital port function from interfering with the function of the Analog

Comparator.

OC0A, Output Compare Match output: The PD6 pin can serve as an external output for the

Timer/Counter0 Compare Match A. The PD6 pin has to be configured as an output (DDD6 set

(one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer

function.

PCINT22: Pin Change Interrupt source 22. The PD6 pin can serve as an external interrupt

source.

• T1/OC0B/PCINT21 – Port D, Bit 5

T1, Timer/Counter1 counter source.

OC0B, Output Compare Match output: The PD5 pin can serve as an external output for the

Timer/Counter0 Compare Match B. The PD5 pin has to be configured as an output (DDD5 set

(one)) to serve this function. The OC0B pin is also the output pin for the PWM mode timer

function.

PCINT21: Pin Change Interrupt source 21. The PD5 pin can serve as an external interrupt

source.

• XCK/T0/PCINT20 – Port D, Bit 4

XCK, USART external clock.

T0, Timer/Counter0 counter source.

PCINT20: Pin Change Interrupt source 20. The PD4 pin can serve as an external interrupt

source.

• INT1/OC2B/PCINT19 – Port D, Bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.

OC2B, Output Compare Match output: The PD3 pin can serve as an external output for the

Timer/Counter0 Compare Match B. The PD3 pin has to be configured as an output (DDD3 set

(one)) to serve this function. The OC2B pin is also the output pin for the PWM mode timer

function.

PCINT19: Pin Change Interrupt source 19. The PD3 pin can serve as an external interrupt

source.

90

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• INT0/PCINT18 – Port D, Bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.

PCINT18: Pin Change Interrupt source 18. The PD2 pin can serve as an external interrupt

source.

• TXD/PCINT17 – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,

this pin is configured as an output regardless of the value of DDD1.

PCINT17: Pin Change Interrupt source 17. The PD1 pin can serve as an external interrupt

source.

• RXD/PCINT16 – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this

pin is configured as an input regardless of the value of DDD0. When the USART forces this pin

to be an input, the pull-up can still be controlled by the PORTD0 bit.

PCINT16: Pin Change Interrupt source 16. The PD0 pin can serve as an external interrupt

source.

Table 13-10 and Table 13-11 relate the alternate functions of Port D to the overriding signals

shown in Figure 13-5 on page 80.

Table 13-10. Overriding Signals for Alternate Functions PD7..PD4

Signal

Name

PD7/AIN1

/PCINT23

PD6/AIN0/

OC0A/PCINT22

PD5/T1/OC0B/

PCINT21

PD4/XCK/

T0/PCINT20

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 OC0A ENABLE OC0B ENABLE UMSEL

PVOV 0 OC0A OC0B XCK OUTPUT

DIEOE PCINT23 • PCIE2 PCINT22 • PCIE2 PCINT21 • PCIE2 PCINT20 • PCIE2

DIEOV 1 1 1 1

DI PCINT23 INPUT PCINT22 INPUT
PCINT21 INPUT
T1 INPUT

PCINT20 INPUT
XCK INPUT
T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

91

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 13-11. Overriding Signals for Alternate Functions in PD3..PD0

Signal

Name

PD3/OC2B/INT1/

PCINT19

PD2/INT0/

PCINT18

PD1/TXD/

PCINT17

PD0/RXD/

PCINT16

PUOE 0 0 TXEN RXEN

PUO 0 0 0 PORTD0 • PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE OC2B ENABLE 0 TXEN 0

PVOV OC2B 0 TXD 0

DIEOE
INT1 ENABLE +
PCINT19 • PCIE2

INT0 ENABLE +
PCINT18 • PCIE1

PCINT17 • PCIE2 PCINT16 • PCIE2

DIEOV 1 1 1 1

DI
PCINT19 INPUT
INT1 INPUT

PCINT18 INPUT
INT0 INPUT

PCINT17 INPUT
PCINT16 INPUT
RXD

AIO – – – –

92

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13.4 Register Description

13.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and

PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See ”Con-

figuring the Pin” on page 76 for more details about this feature.

13.4.2 PORTB – The Port B Data Register

13.4.3 DDRB – The Port B Data Direction Register

13.4.4 PINB – The Port B Input Pins Address

13.4.5 PORTC – The Port C Data Register

13.4.6 DDRC – The Port C Data Direction Register

13.4.7 PINC – The Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A

93

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

13.4.8 PORTD – The Port D Data Register

13.4.9 DDRD – The Port D Data Direction Register

13.4.10 PIND – The Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

94

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

14. 8-bit Timer/Counter0 with PWM

14.1 Features
• Two Independent Output Compare Units

• Double Buffered Output Compare Registers

• Clear Timer on Compare Match (Auto Reload)

• Glitch Free, Phase Correct Pulse Width Modulator (PWM)

• Variable PWM Period

• Frequency Generator

• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

14.2 Overview

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output

Compare Units, and with PWM support. It allows accurate program execution timing (event man-

agement) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual

placement of I/O pins, refer to ”Pinout ATmega48PA/88PA/168PA/328P” on page 2. CPU

accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific

I/O Register and bit locations are listed in the ”Register Description” on page 106.

The PRTIM0 bit in ”Minimizing Power Consumption” on page 42 must be written to zero to

enable Timer/Counter0 module.

95

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 14-1. 8-bit Timer/Counter Block Diagram

14.2.1 Definitions

Many register and bit references in this section are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-

pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or

bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing

Timer/Counter0 counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

14.2.2 Registers

The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit

registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the

Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Inter-

rupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

Clock Select

Timer/Counter
D

A
TA

 B
U

S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

Detector

(From Prescaler)

clk
Tn

Table 14-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR0A Register. The assignment is depen-

dent on the mode of operation.

96

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the

Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-

erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and

OC0B). See Section “15.7.3” on page 123. for details. The compare match event will also set the

Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare interrupt

request.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits

located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-

caler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 141.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the

timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of

whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clk
Tn

bottom

direction

clear

97

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in

the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter

Control Register B (TCCR0B). There are close connections between how the counter behaves

(counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B.

For more details about advanced counting sequences and waveform generation, see ”Modes of

Operation” on page 99.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by

the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers

(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a

match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock

cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output

Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-

cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit

location. The Waveform Generator uses the match signal to generate an output according to

operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The max

and bottom signals are used by the Waveform Generator for handling the special cases of the

extreme values in some modes of operation (”Modes of Operation” on page 99).

Figure 14-3 shows a block diagram of the Output Compare unit.

Figure 14-3. Output Compare Unit, Block Diagram

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation

(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-

ble buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare

Registers to either top or bottom of the counting sequence. The synchronization prevents the

occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnx1:0

bottom

98

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The OCR0x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR0x directly.

14.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC0x) bit. Forcing compare match will not set the

OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real compare

match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or

toggled).

14.5.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 Register will block any compare match that occur in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-

ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is

enabled.

14.5.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit,

independently of whether the Timer/Counter is running or not. If the value written to TCNT0

equals the OCR0x value, the compare match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is

downcounting.

The setup of the OC0x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-

pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when

changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.

Changing the COM0x1:0 bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses

the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next compare match.

Also, the COM0x1:0 bits control the OC0x pin output source. Figure 14-4 shows a simplified

schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR

and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x

state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset occur,

the OC0x Register is reset to “0”.

99

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 14-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform

Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-

ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the out-

put is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of

operation. See Section “14.9” on page 106.

14.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.

For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the

OC0x Register is to be performed on the next compare match. For compare output actions in the

non-PWM modes refer to Table 14-2 on page 106. For fast PWM mode, refer to Table 14-3 on

page 106, and for phase correct PWM refer to Table 14-4 on page 107.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC0x strobe bits.

14.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is

defined by the combination of the Waveform Generation mode (WGM02:0) and Compare Output

mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM0x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM0x1:0 bits control whether the output should be set, cleared, or toggled at a compare

match (See Section “14.6” on page 98.).

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 104.

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
A
T
A

 B
U

S

FOCn

clk
I/O

100

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

14.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same

timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV0 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNT0)

increases until a compare match occurs between TCNT0 and OCR0A, and then counter

(TCNT0) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR0A is lower than the current

value of TCNT0, the counter will miss the compare match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can

occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

101

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =

fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high fre-

quency PWM waveform generation option. The fast PWM differs from the other PWM option by

its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In non-

inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match

between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the out-

put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the

operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare

matches between OCR0x and TCNT0.

Figure 14-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

102

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.

Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows

the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available

for the OC0B pin (see Table 14-6 on page 107). The actual OC0x value will only be visible on

the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-

ated by setting (or clearing) the OC0x Register at the compare match between OCR0x and

TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is

cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0

bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC0x to toggle its logical level on each compare match (COM0x1:0 = 1). The waveform

generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This

feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-

put Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct

PWM waveform generation option. The phase correct PWM mode is based on a dual-slope

operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-

inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare match

between TCNT0 and OCR0x while upcounting, and set on the compare match while downcount-

ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has

lower maximum operation frequency than single slope operation. However, due to the symmet-

ric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.

When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal

to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown

on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating

the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The

small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0x

and TCNT0.

fOCnxPWM

fclk_I/O

N 256⋅
------------------=

103

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted

PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to

one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is

not available for the OC0B pin (see Table 14-7 on page 108). The actual OC0x value will only be

visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is

generated by clearing (or setting) the OC0x Register at the compare match between OCR0x and

TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at compare

match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the

output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 OCnx has a transition from high to low even though

there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-

TOM. There are two cases that give a transition without Compare Match.

• OCRnx changes its value from MAX, like in Figure 14-7. When the OCR0A value is MAX the

OCn pin value is the same as the result of a down-counting Compare Match. To ensure

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

fOCnxPCPWM

fclk_I/O

N 510⋅
------------------=

104

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

symmetry around BOTTOM the OCnx value at MAX must correspond to the result of an up-

counting Compare Match.

• The timer starts counting from a value higher than the one in OCRnx, and for that reason

misses the Compare Match and hence the OCnx change that would have happened on the

way up.

14.8 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a

clock enable signal in the following figures. The figures include information on when interrupt

flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure

shows the count sequence close to the MAX value in all modes other than phase correct PWM

mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

Figure 14-9 shows the same timing data, but with the prescaler enabled.

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 14-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC

mode and PWM mode, where OCR0A is TOP.

clk
Tn

(clk
I/O

/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

105

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast

PWM mode where OCR0A is TOP.

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

106

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

14.9 Register Description

14.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0

bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin

must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the

WGM02:0 bit setting. Table 14-2 shows the COM0A1:0 bit functionality when the WGM02:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 101 for more details.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match

Table 14-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match, set OC0A at BOTTOM,
(non-inverting mode).

1 1
Set OC0A on Compare Match, clear OC0A at BOTTOM,
(inverting mode).

107

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 14-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 128 for more details.

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0

bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin

must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the

WGM02:0 bit setting. Table 14-5 shows the COM0B1:0 bit functionality when the WGM02:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 101
for more details.

Table 14-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on
Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on
Compare Match when down-counting.

Table 14-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 14-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match, set OC0B at BOTTOM,
(non-inverting mode)

1 1
Set OC0B on Compare Match, clear OC0B at BOTTOM,
(inverting mode).

108

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 14-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 102 for more details.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode

Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 14-8. Modes of operation supported by the Timer/Counter

unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of

Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 99).

Notes: 1. MAX = 0xFF
2. BOTTOM = 0x00

Table 14-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on
Compare Match when down-counting.

Table 14-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00

Timer/Counter

Mode of

Operation TOP

Update of

OCRx at

TOV Flag

Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

109

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

14.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is

changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a

strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the

forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B

The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is

changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a

strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the

forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bit 3 – WGM02: Waveform Generation Mode

See the description in the ”TCCR0A – Timer/Counter Control Register A” on page 106.

• Bits 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

110

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

14.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare

Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,

introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

14.9.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC0A pin.

14.9.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the

counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC0B pin.

Table 14-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

111

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if

a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the Timer/Counter

Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the

Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the

Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-

rupt Flag Register – TIFR0.

14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag

The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in

OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-

responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to

the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),

and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag

The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data

in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-

responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

112

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),

and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware

when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by

writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt

Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 14-8, ”Waveform

Generation Mode Bit Description” on page 108.

113

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

15. 16-bit Timer/Counter1 with PWM

15.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)

• Two independent Output Compare Units

• Double Buffered Output Compare Registers

• One Input Capture Unit

• Input Capture Noise Canceler

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Variable PWM Period

• Frequency Generator

• External Event Counter

• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),

wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”

replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit

channel. However, when using the register or bit defines in a program, the precise form must be

used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1. For the actual

placement of I/O pins, refer to ”Pinout ATmega48PA/88PA/168PA/328P” on page 2. CPU

accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific

I/O Register and bit locations are listed in the ”Register Description” on page 134.

The PRTIM1 bit in ”PRR – Power Reduction Register” on page 45 must be written to zero to

enable Timer/Counter1 module.

114

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 15-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Table 13-3 on page 82 and Table 13-9 on page 88 for
Timer/Counter1 pin placement and description.

15.2.1 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-

ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-

bit registers. These procedures are described in the section ”Accessing 16-bit Registers” on

page 115. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no

CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all

visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with

the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-

ter value at all time. The result of the compare can be used by the Waveform Generator to

generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See ”Out-

Clock Select

Timer/Counter

D
A
TA

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clk
Tn

115

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

put Compare Units” on page 122. The compare match event will also set the Compare Match

Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-

gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See

”Analog Comparator” on page 246) The Input Capture unit includes a digital filtering unit (Noise

Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined

by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using

OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a

PWM output. However, the TOP value will in this case be double buffered allowing the TOP

value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used

as an alternative, freeing the OCR1A to be used as PWM output.

15.2.2 Definitions

The following definitions are used extensively throughout the section:

15.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via

the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.

Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit

access. The same temporary register is shared between all 16-bit registers within each 16-bit

timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a

16-bit register is written by the CPU, the high byte stored in the temporary register, and the low

byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of

a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-

rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-

bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low

byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no

interrupts updates the temporary register. The same principle can be used directly for accessing

the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit

access.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is
dependent of the mode of operation.

116

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt

occurs between the two instructions accessing the 16-bit register, and the interrupt code

updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-

ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both

the main code and the interrupt code update the temporary register, the main code must disable

the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.

Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17

out TCNT1L,r16

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;

/* Read TCNT1 into i */

i = TCNT1;

...

117

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

The following code examples show how to do an atomic write of the TCNT1 Register contents.

Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example(1)

TIM16_ReadTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */

i = TCNT1;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}

118

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-

ten to TCNT1.

15.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,

then the high byte only needs to be written once. However, note that the same rule of atomic

operation described previously also applies in this case.

15.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits

located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and

prescaler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 141.

Assembly Code Example(1)

TIM16_WriteTCNT1:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

out TCNT1H,r17

out TCNT1L,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */

TCNT1 = i;

/* Restore global interrupt flag */

SREG = sreg;

}

119

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

15.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.

Figure 15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-

taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight

bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an

access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).

The temporary register is updated with the TCNT1H value when the TCNT1L is read, and

TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the

CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.

It is important to notice that there are special cases of writing to the TCNT1 Register when the

counter is counting that will give unpredictable results. The special cases are described in the

sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the

timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of

whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits

(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).

There are close connections between how the counter behaves (counts) and how waveforms

are generated on the Output Compare outputs OC1x. For more details about advanced counting

sequences and waveform generation, see ”Modes of Operation” on page 125.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clk
Tn

120

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by

the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

15.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give

them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-

tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The

time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-

nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of

the block diagram that are not directly a part of the Input Capture unit are gray shaded. The

small “n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively

on the Analog Comparator output (ACO), and this change confirms to the setting of the edge

detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter

(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at

the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),

the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically

cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software

by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low

byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied

into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will

access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes

the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*

121

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1

Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location

before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to ”Accessing 16-bit Registers”

on page 115.

15.6.1 Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).

Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the

Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog

Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register

(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag

must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled

using the same technique as for the T1 pin (Figure 16-1 on page 141). The edge detector is also

identical. However, when the noise canceler is enabled, additional logic is inserted before the

edge detector, which increases the delay by four system clock cycles. Note that the input of the

noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-

form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

15.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The

noise canceler input is monitored over four samples, and all four must be equal for changing the

output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in

Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-

tional four system clock cycles of delay from a change applied to the input, to the update of the

ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the

prescaler.

15.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity

for handling the incoming events. The time between two events is critical. If the processor has

not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be

overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-

rupt handler routine as possible. Even though the Input Capture interrupt has relatively high

priority, the maximum interrupt response time is dependent on the maximum number of clock

cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is

actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after

each capture. Changing the edge sensing must be done as early as possible after the ICR1

Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be

122

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,

the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

15.7 Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register

(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output

Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-

pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared

when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-

ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to

generate an output according to operating mode set by the Waveform Generation mode

(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals

are used by the Waveform Generator for handling the special cases of the extreme values in

some modes of operation (See Section “15.9” on page 125.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,

counter resolution). In addition to the counter resolution, the TOP value defines the period time

for waveforms generated by the Waveform Generator.

Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and

bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output

Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output

Compare unit are gray shaded.

Figure 15-4. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation

(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the

double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-

pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM

123

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-

put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)

Register is only changed by a write operation (the Timer/Counter does not update this register

automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte

temporary register (TEMP). However, it is a good practice to read the low byte first as when

accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-

ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be

written first. When the high byte I/O location is written by the CPU, the TEMP Register will be

updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,

the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare

Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”

on page 115.

15.7.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the

OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare

match had occurred (the COM11:0 bits settings define whether the OC1x pin is set, cleared or

toggled).

15.7.2 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer

clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the

same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

15.7.3 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT1 when using any of the Output Compare

channels, independent of whether the Timer/Counter is running or not. If the value written to

TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect wave-

form generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP

values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.

Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-

pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.

Changing the COM1x1:0 bits will take effect immediately.

124

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

15.8 Compare Match Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses

the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.

Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 15-5 shows a simplified

schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the

OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system reset

occur, the OC1x Register is reset to “0”.

Figure 15-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform

Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-

ble on the pin. The port override function is generally independent of the Waveform Generation

mode, but there are some exceptions. Refer to Table 15-1, Table 15-2 and Table 15-3 for

details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-

put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of

operation. See Section “15.11” on page 134.

The COM1x1:0 bits have no effect on the Input Capture unit.

15.8.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the

OC1x Register is to be performed on the next compare match. For compare output actions in the

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1
D

A
TA

 B
U

S

FOCnx

clk
I/O

125

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

non-PWM modes refer to Table 15-1 on page 134. For fast PWM mode refer to Table 15-2 on

page 135, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on

page 135.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC1x strobe bits.

15.9 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is

defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Output

mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare

match (See Section “15.8” on page 124.)

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 132.

15.9.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the

BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in

the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves

like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow

interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-

ware. There are no special cases to consider in the Normal mode, a new counter value can be

written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum

interval between the external events must not exceed the resolution of the counter. If the interval

between events are too long, the timer overflow interrupt or the prescaler must be used to

extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the

Output Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

15.9.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register

are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when

the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =

12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This

mode allows greater control of the compare match output frequency. It also simplifies the opera-

tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT1)

increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)

is cleared.

126

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 15-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either

using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the

interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-

ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a

low prescaler value must be done with care since the CTC mode does not have the double buff-

ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of

TCNT1, the counter will miss the compare match. The counter will then have to count to its max-

imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode

using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for

the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-

quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is

defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x0000.

15.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a

high frequency PWM waveform generation option. The fast PWM differs from the other PWM

options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts

from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared

on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare

Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope

operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-

rect and phase and frequency correct PWM modes that use dual-slope operation. This high

frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC

applications. High frequency allows physically small sized external components (coils, capaci-

tors), hence reduces total system cost.

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA

fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=

127

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or

OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the max-

imum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be

calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the

fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =

14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer

clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure

shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the

timing diagram shown as a histogram for illustrating the single-slope operation. The diagram

includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1

slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will

be set when a compare match occurs.

Figure 15-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition

the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A

or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-

dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

Note that when using fixed TOP values the unused bits are masked to zero when any of the

OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP

value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low

value when the counter is running with none or a low prescaler value, there is a risk that the new

ICR1 value written is lower than the current value of TCNT1. The result will then be that the

counter will miss the compare match at the TOP value. The counter will then have to count to the

MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

128

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

to be written anytime. When the OCR1A I/O location is written the value written will be put into

the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value

in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done

at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using

ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,

if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A

as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.

Setting the COM1x1:0 bits to two will produce a inverted PWM and an non-inverted PWM output

can be generated by setting the COM1x1:0 to three (see Table on page 135). The actual OC1x

value will only be visible on the port pin if the data direction for the port pin is set as output

(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at

the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at

the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-

put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP

will result in a constant high or low output (depending on the polarity of the output set by the

COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only

if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have

a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is

similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-

pare unit is enabled in the fast PWM mode.

15.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,

10, or 11) provides a high resolution phase correct PWM waveform generation option. The

phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-

slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from

TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is

cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the

compare match while downcounting. In inverting Output Compare mode, the operation is

inverted. The dual-slope operation has lower maximum operation frequency than single slope

operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes

are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined

by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to

fOCnxPWM

fclk_I/O

N 1 TOP+()⋅
-----------------------------------=

129

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-

tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either

one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1

(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the

TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock

cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure

shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1

value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The

diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on

the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-

rupt Flag will be set when a compare match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When

either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-

ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer

value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter

reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

Note that when using fixed TOP values, the unused bits are masked to zero when any of the

OCR1x Registers are written. As the third period shown in Figure 15-8 illustrates, changing the

TOP actively while the Timer/Counter is running in the phase correct mode can result in an

unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Reg-

ister. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

130

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

implies that the length of the falling slope is determined by the previous TOP value, while the

length of the rising slope is determined by the new TOP value. When these two values differ the

two slopes of the period will differ in length. The difference in length gives the unsymmetrical

result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct

mode when changing the TOP value while the Timer/Counter is running. When using a static

TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the

OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted

PWM output can be generated by setting the COM1x1:0 to three (See Table on page 135). The

actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as

output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Regis-

ter at the compare match between OCR1x and TCNT1 when the counter increments, and

clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when

the counter decrements. The PWM frequency for the output when using phase correct PWM can

be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the

output will be continuously low and if set equal to TOP the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If

OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output

will toggle with a 50% duty cycle.

15.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM

mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-

form generation option. The phase and frequency correct PWM mode is, like the phase correct

PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM

(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the

Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while

upcounting, and set on the compare match while downcounting. In inverting Compare Output

mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-

quency compared to the single-slope operation. However, due to the symmetric feature of the

dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM

mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 15-

8 and Figure 15-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either

ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and

fOCnxPCPWM

fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

131

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can

be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value

matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The

counter has then reached the TOP and changes the count direction. The TCNT1 value will be

equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency

correct PWM mode is shown on Figure 15-9. The figure shows phase and frequency correct

PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing dia-

gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-

inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-

sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a

compare match occurs.

Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x

Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1

is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.

The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the

TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetri-

cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising

and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore

frequency correct.

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

132

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using

ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,

if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as

TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-

forms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and

an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table on

page 135). The actual OC1x value will only be visible on the port pin if the data direction for the

port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing)

the OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-

ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and

TCNT1 when the counter decrements. The PWM frequency for the output when using phase

and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the

output will be continuously low and if set equal to TOP the output will be set to high for non-

inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A

is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle

with a 50% duty cycle.

15.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a

clock enable signal in the following figures. The figures include information on when Interrupt

Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for

modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCF1x.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 15-11 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM

fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clk
Tn

(clk
I/O

/1)

OCFnx

clk
I/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

133

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and

frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams

will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.

The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 15-12. Timer/Counter Timing Diagram, no Prescaling

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
Tn

(clk
I/O

/1)

clk
I/O

134

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 15-13 shows the same timing data, but with the prescaler enabled.

Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

15.11 Register Description

15.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-

tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output

overrides the normal port functionality of the I/O pin it is connected to. If one or both of the

COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the

I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-

ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-

dent of the WGM13:0 bits setting. Table 15-1 shows the COM1x1:0 bit functionality when the

WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-1. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0
Clear OC1A/OC1B on Compare Match (Set output to
low level).

1 1
Set OC1A/OC1B on Compare Match (Set output to
high level).

135

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 15-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast

PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See Section
“15.9.3” on page 126. for more details.

Table 15-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase

correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
Section “15.9.4” on page 128. for more details.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 15-4. Modes of operation supported by the Timer/Counter

unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types

of Pulse Width Modulation (PWM) modes. (See Section “15.9” on page 125.).

Table 15-2. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match, set
OC1A/OC1B at BOTTOM (non-inverting mode)

1 1
Set OC1A/OC1B on Compare Match, clear
OC1A/OC1B at BOTTOM (inverting mode)

Table 15-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 9 or 11: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match when up-
counting. Set OC1A/OC1B on Compare Match when
downcounting.

1 1
Set OC1A/OC1B on Compare Match when up-
counting. Clear OC1A/OC1B on Compare Match
when downcounting.

136

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

15.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is

activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four

successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is

therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture

event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and

when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the

Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this

can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

Table 15-4. Waveform Generation Mode Bit Description(1)

Mode WGM13

WGM12

(CTC1)

WGM11

(PWM11)

WGM10

(PWM10)

Timer/Counter Mode of

Operation TOP

Update of

OCR1x at

TOV1 Flag

Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, Phase and Frequency
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, Phase and Frequency
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

137

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the

TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-

ture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be

written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure

15-10 and Figure 15-11.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

15.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.

When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on

the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0

bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the

value present in the COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer

on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always

read as zero.

Table 15-5. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

138

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

15.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct

access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To

ensure that both the high and low bytes are read and written simultaneously when the CPU

accesses these registers, the access is performed using an 8-bit temporary High Byte Register

(TEMP). This temporary register is shared by all the other 16-bit registers. See Section “15.3” on

page 115.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-

pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock

for all compare units.

15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the

counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are

written simultaneously when the CPU writes to these registers, the access is performed using an

8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other

16-bit registers. See Section “15.3” on page 115.

15.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the

ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture

can be used for defining the counter TOP value.

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

139

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read

simultaneously when the CPU accesses these registers, the access is performed using an 8-bit

temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit

registers. See Section “15.3” on page 115.

15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt

Vector (see “Interrupts” on page 57) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 57) is executed when the OCF1B Flag, located in

TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding

Interrupt Vector (see “Interrupts” on page 57) is executed when the OCF1A Flag, located in

TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector

(See ”Interrupts” on page 57) is executed when the TOV1 Flag, located in TIFR1, is set.

15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 7, 6 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

140

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register

(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-

ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,

ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4, 3 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output

Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-

cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output

Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-

cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,

the TOV1 Flag is set when the timer overflows. Refer to Table 15-4 on page 136 for the TOV1

Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.

Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

141

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

16. Timer/Counter0 and Timer/Counter1 Prescalers
”8-bit Timer/Counter0 with PWM” on page 94 and ”16-bit Timer/Counter1 with PWM” on page

113 share the same prescaler module, but the Timer/Counters can have different prescaler set-

tings. The description below applies to both Timer/Counter1 and Timer/Counter0.

16.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This

provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system

clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a

clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or

fCLK_I/O/1024.

16.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of the

Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is

not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications

for situations where a prescaled clock is used. One example of prescaling artifacts occurs when

the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock

cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system

clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-

tion. However, care must be taken if the other Timer/Counter that shares the same prescaler

also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is

connected to.

16.3 External Clock Source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock

(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization

logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 16-1

shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector

logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch

is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative

(CSn2:0 = 6) edge it detects.

Figure 16-1. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles

from an edge has been applied to the T1/T0 pin to the counter is updated.

Tn_sync
(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clk
I/O

142

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least

one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to

ensure correct sampling. The external clock must be guaranteed to have less than half the sys-

tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses

sampling, the maximum frequency of an external clock it can detect is half the sampling fre-

quency (Nyquist sampling theorem). However, due to variation of the system clock frequency

and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is

recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 16-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 16-1.

PSRSYNC

Clear

clk
T1 clk

T0

T1

T0

clk
I/O

Synchronization

Synchronization

143

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

16.4 Register Description

16.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the

value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the correspond-

ing prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are

halted and can be configured to the same value without the risk of one of them advancing during

configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared

by hardware, and the Timer/Counters start counting simultaneously.

• Bit 0 – PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-

mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1

and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both

timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

144

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

17.1 Features
• Single Channel Counter

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Frequency Generator

• 10-bit Clock Prescaler

• Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)

• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

17.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified

block diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual placement of

I/O pins, refer to ”Pinout ATmega48PA/88PA/168PA/328P” on page 2. CPU accessible I/O Reg-

isters, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit

locations are listed in the ”Register Description” on page 158.

The PRTIM2 bit in ”Minimizing Power Consumption” on page 42 must be written to zero to

enable Timer/Counter2 module.

Figure 17-1. 8-bit Timer/Counter Block Diagram

Clock Select

Timer/Counter

D
A
TA

 B
U

S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

Detector

(From Prescaler)

clk
Tn

145

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit reg-

isters. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag

Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register

(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from

the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by

the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock

source he Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-

tive when no clock source is selected. The output from the Clock Select logic is referred to as the

timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the

Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-

erator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and

OC2B). See Section “17.5” on page 146. for details. The compare match event will also set the

Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt

request.

17.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 2. However, when using the register or bit

defines in a program, the precise form must be used, i.e., TCNT2 for accessing Timer/Counter2

counter value and so on.

The definitions in Table 17-1 are also used extensively throughout the section.

17.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous

clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2

bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter

Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see ”ASSR

– Asynchronous Status Register” on page 164. For details on clock sources and prescaler, see

”Timer/Counter Prescaler” on page 156.

17.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

17-2 on page 146 shows a block diagram of the counter and its surrounding environment.

Table 17-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR2A Register. The assignment is depen-

dent on the mode of operation.

146

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 17-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the

timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of

whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in

the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter

Control Register B (TCCR2B). There are close connections between how the counter behaves

(counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B.

For more details about advanced counting sequences and waveform generation, see ”Modes of

Operation” on page 149.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by

the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

17.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register

(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a

match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock

cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output

Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-

cuted. Alternatively, the Output Compare Flag can be cleared by software by writing a logical

one to its I/O bit location. The Waveform Generator uses the match signal to generate an output

according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0)

bits. The max and bottom signals are used by the Waveform Generator for handling the special

cases of the extreme values in some modes of operation (”Modes of Operation” on page 149).

Figure 17-3 shows a block diagram of the Output Compare unit.

DATA BUS

TCNTn Control Logic

count

TOVn

(Int.Req.)

topbottom

direction

clear

TOSC1

T/C

Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn

147

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 17-3. Output Compare Unit, Block Diagram

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)

modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double

buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare

Register to either top or bottom of the counting sequence. The synchronization prevents the

occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR2x directly.

17.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the

OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare

match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or

toggled).

17.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initial-

ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is

enabled.

17.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,

independently of whether the Timer/Counter is running or not. If the value written to TCNT2

equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is

downcounting.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom

148

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The setup of the OC2x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC2x value is to use the Force Output Com-

pare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.

Changing the COM2x1:0 bits will take effect immediately.

17.6 Compare Match Output Unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses

the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match.

Also, the COM2x1:0 bits control the OC2x pin output source. Figure 17-4 shows a simplified

schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the

OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 17-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform

Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visi-

ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the out-

put is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of

operation. See Section “17.11” on page 158.

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
A
TA

 B
U

S

FOCnx

clk
I/O

149

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the

OC2x Register is to be performed on the next compare match. For compare output actions in the

non-PWM modes refer to Table 17-5 on page 159. For fast PWM mode, refer to Table 17-6 on

page 159, and for phase correct PWM refer to Table 17-7 on page 160.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC2x strobe bits.

17.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is

defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Output

mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare

match (See Section “17.6” on page 148.).

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 153.

17.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same

timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV2 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

17.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-5. The counter value (TCNT2)

increases until a compare match occurs between TCNT2 and OCR2A, and then counter

(TCNT2) is cleared.

150

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 17-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR2A is lower than the current

value of TCNT2, the counter will miss the compare match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can

occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for

the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =

fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

17.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-

quency PWM waveform generation option. The fast PWM differs from the other PWM option by

its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In non-

inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match

between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the out-

put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the

operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

151

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

PWM mode is shown in Figure 17-6. The TCNT2 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare

matches between OCR2x and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.

Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3,

and OCR2A when MGM2:0 = 7. (See Table 17-3 on page 158). The actual OC2x value will only

be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-

form is generated by setting (or clearing) the OC2x Register at the compare match between

OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the

counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0

bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM

fclk_I/O

N 256⋅
------------------=

152

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This fea-

ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output

Compare unit is enabled in the fast PWM mode.

17.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct

PWM waveform generation option. The phase correct PWM mode is based on a dual-slope

operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-

TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In non-

inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match

between TCNT2 and OCR2x while upcounting, and set on the compare match while downcount-

ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has

lower maximum operation frequency than single slope operation. However, due to the symmet-

ric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.

When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal

to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown

on Figure 17-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating

the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The

small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x

and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

153

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when

WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 17-4 on page 159). The actual OC2x

value will only be visible on the port pin if the data direction for the port pin is set as output. The

PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match

between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x

Register at compare match between OCR2x and TCNT2 when the counter decrements. The

PWM frequency for the output when using phase correct PWM can be calculated by the follow-

ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 17-7 OCnx has a transition from high to low even though

there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-

TOM. There are two cases that give a transition without Compare Match.

• OCR2A changes its value from MAX, like in Figure 17-7. When the OCR2A value is MAX the

OCn pin value is the same as the result of a down-counting compare match. To ensure

symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-

counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason

misses the Compare Match and hence the OCn change that would have happened on the way

up.

17.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)

is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by

the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are

set. Figure 17-8 contains timing data for basic Timer/Counter operation. The figure shows the

count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 17-8. Timer/Counter Timing Diagram, no Prescaling

Figure 17-9 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM

fclk_I/O

N 510⋅
------------------=

clk
Tn

(clk
I/O

/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

154

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 17-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)

Figure 17-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

155

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of

Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe

procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and TCR2xUB.

e. Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a

temporary register, and latched after two positive edges on TOSC1. The user should not write

a new value before the contents of the temporary register have been transferred to its

destination. Each of the five mentioned registers have their individual temporary register, which

means that e.g. writing to TCNT2 does not disturb an OCR2x write in progress. To detect that a

transfer to the destination register has taken place, the Asynchronous Status Register – ASSR

has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,

OCR2x, or TCCR2x, the user must wait until the written register has been updated if

Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode

before the changes are effective. This is particularly important if any of the Output Compare2

interrupt is used to wake up the device, since the Output Compare function is disabled during

writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode

before the corresponding OCR2xUB bit returns to zero, the device will never receive a

compare match interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction

mode, precautions must be taken if the user wants to re-enter one of these modes: If re-

entering sleep mode within the TOSC1 cycle, the interrupt will immidiately occur and the

device wake up again. The result is multiple interrupts and wake-ups within one TOSC1 cycle

from the first interrupt. If the user is in doubt whether the time before re-entering Power-save or

ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that

one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is

always running, except in Power-down and Standby modes. After a Power-up Reset or wake-

up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator

might take as long as one second to stabilize. The user is advised to wait for at least one

second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby

mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up

from Power-down or Standby mode due to unstable clock signal upon start-up, no matter

whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

156

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is

clocked asynchronously: When the interrupt condition is met, the wake up process is started

on the following cycle of the timer clock, that is, the timer is always advanced by at least one

before the processor can read the counter value. After wake-up, the MCU is halted for four

cycles, it executes the interrupt routine, and resumes execution from the instruction following

SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect

result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be

done through a register synchronized to the internal I/O clock domain. Synchronization takes

place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock

(clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep)

until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-

save mode is essentially unpredictable, as it depends on the wake-up time. The recommended

procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2x or TCCR2x.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous

timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least

one before the processor can read the timer value causing the setting of the Interrupt Flag. The

Output Compare pin is changed on the timer clock and is not synchronized to the processor

clock.

17.10 Timer/Counter Prescaler

Figure 17-12. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main

system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously

clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clk
I/O clk

T2S

TOSC1

AS2

CS20

CS21

CS22

c
lk

T
2
S
/8

c
lk

T
2
S
/6

4

c
lk

T
2
S
/1

2
8

c
lk

T
2
S
/1

0
2
4

c
lk

T
2
S
/2

5
6

c
lk

T
2
S
/3

2

0PSRASY

Clear

clk
T2

157

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can

then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock

source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,

clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.

Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a

predictable prescaler.

158

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.11 Register Description

17.11.1 TCCR2A – Timer/Counter Control Register A

• Bits 7:6 – COM2A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0

bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin

must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the

WGM22:0 bit setting. Table 17-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

Table 17-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 150 for more details.

Bit 7 6 5 4 3 2 1 0

(0xB0) COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC2A on Compare Match

1 0 Clear OC2A on Compare Match

1 1 Set OC2A on Compare Match

Table 17-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC0A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match, set OC2A at BOTTOM,
(non-inverting mode).

1 1
Set OC2A on Compare Match, clear OC2A at BOTTOM,

(inverting mode).

159

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 17-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 152 for more details.

• Bits 5:4 – COM2B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0

bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin

must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the

WGM22:0 bit setting. Table 17-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

Table 17-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM

mode.

Table 17-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on
Compare Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on
Compare Match when down-counting.

Table 17-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

Table 17-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).

1 1
Set OC2B on Compare Match, clear OC2B at BOTTOM,
(inverting mode).

160

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Phase Correct PWM
Mode” on page 152 for more details.

Table 17-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 152 for more details.

• Bits 3, 2 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bits 1:0 – WGM21:0: Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 17-8. Modes of operation supported by the Timer/Counter

unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of

Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 149).

Notes: 1. MAX= 0xFF
2. BOTTOM= 0x00

Table 17-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match when up-counting. Set OC2B on
Compare Match when down-counting.

1 1
Set OC2B on Compare Match when up-counting. Clear OC2B on
Compare Match when down-counting.

Table 17-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0

Timer/Counter

Mode of

Operation TOP

Update of

OCRx at

TOV Flag

Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

161

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.11.2 TCCR2B – Timer/Counter Control Register B

• Bit 7 – FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is

changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a

strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the

forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6 – FOC2B: Force Output Compare B

The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when

TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit,

an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is

changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a

strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the

forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2B as TOP.

The FOC2B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bit 3 – WGM22: Waveform Generation Mode

See the description in the ”TCCR2A – Timer/Counter Control Register A” on page 158.

• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table

17-9 on page 162.

Bit 7 6 5 4 3 2 1 0

(0xB1) FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/Write W W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

162

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

17.11.3 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare

Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,

introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers.

17.11.4 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC2A pin.

17.11.5 OCR2B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the

counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC2B pin.

Table 17-9. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB4) OCR2B[7:0] OCR2B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

163

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.11.6 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is set in the Timer/Coun-

ter 2 Interrupt Flag Register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the Timer/Coun-

ter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt

Flag Register – TIFR2.

17.11.7 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 2 – OCF2B: Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the

data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt

Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 1 – OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the

data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt

Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-

ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared

by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-

rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In

PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – OCF2B OCF2A TOV2 TIFR2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

164

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17.11.8 ASSR – Asynchronous Status Register

• Bit 7 – RES: Reserved bit

This bit is reserved and will always read as zero.

• Bit 6 – EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-

fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a

32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.

Note that the crystal Oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is

written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-

lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,

OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.

When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.

When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.

When OCR2B has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value.

• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.

When TCCR2A has been updated from the temporary storage register, this bit is cleared by

hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new

value.

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.

When TCCR2B has been updated from the temporary storage register, this bit is cleared by

hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new

value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is

set, the updated value might get corrupted and cause an unintentional interrupt to occur.

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

165

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.

When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A

and TCCR2B the value in the temporary storage register is read.

17.11.9 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared

immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous

mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by

hardware if the TSM bit is set. Refer to the description of the ”Bit 7 – TSM: Timer/Counter Syn-

chronization Mode” on page 143 for a description of the Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

166

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

18. SPI – Serial Peripheral Interface

18.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer

• Master or Slave Operation

• LSB First or MSB First Data Transfer

• Seven Programmable Bit Rates

• End of Transmission Interrupt Flag

• Write Collision Flag Protection

• Wake-up from Idle Mode

• Double Speed (CK/2) Master SPI Mode

18.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the

ATmega48PA/88PA/168PA/328P and peripheral devices or between several AVR devices.

The USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 204. The

PRSPI bit in ”Minimizing Power Consumption” on page 42 must be written to zero to enable SPI

module.

Figure 18-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 13-3 on page 82 for SPI pin placement.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

167

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2 on page

167. The system consists of two shift Registers, and a Master clock generator. The SPI Master

initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave.

Master and Slave prepare the data to be sent in their respective shift Registers, and the Master

generates the required clock pulses on the SCK line to interchange data. Data is always shifted

from Master to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the

Master In – Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave

by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This

must be handled by user software before communication can start. When this is done, writing a

byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight

bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of

Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an

interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or

signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be

kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long

as the SS pin is driven high. In this state, software may update the contents of the SPI Data

Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin

until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission

Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt

is requested. The Slave may continue to place new data to be sent into SPDR before reading

the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-

tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before

the entire shift cycle is completed. When receiving data, however, a received character must be

read from the SPI Data Register before the next character has been completely shifted in. Oth-

erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure

correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

SHIFT
ENABLE

168

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to Table 18-1 on page 168. For more details on automatic port overrides, refer to

”Alternate Port Functions” on page 80.

Note: See ”Alternate Functions of Port B” on page 82 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction

Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI

with DDB5 and DDR_SPI with DDRB.

Table 18-1. SPI Pin Overrides(Note:)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

169

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

in r16, SPSR

sbrsr16, SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

170

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The following code examples show how to initialize the SPI as a Slave and how to perform a

simple reception.

Note: 1. See ”About Code Examples” on page 7.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

171

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

18.3 SS Pin Functionality

18.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is

held low, the SPI is activated, and MISO becomes an output if configured so by the user. All

other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin

is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous

with the master clock generator. When the SS pin is driven high, the SPI slave will immediately

reset the send and receive logic, and drop any partially received data in the Shift Register.

18.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the

direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI

system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin

is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin

defined as an input, the SPI system interprets this as another master selecting the SPI as a

slave and starting to send data to it. To avoid bus contention, the SPI system takes the following

actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-

bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the

MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master

mode.

18.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are

determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure

18-3 and Figure 18-4 on page 172. Data bits are shifted out and latched in on opposite edges of

the SCK signal, ensuring sufficient time for data signals to stabilize. This is clearly seen by sum-

marizing Table 18-3 on page 173 and Table 18-4 on page 173, as done in Table 18-2.

Table 18-2. SPI Modes

SPI Mode Conditions Leading Edge Trailing eDge

0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)

1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

172

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 18-3. SPI Transfer Format with CPHA = 0

Figure 18-4. SPI Transfer Format with CPHA = 1

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

173

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

18.5 Register Description

18.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if

the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI

operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic

zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-

ter mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low

when idle. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is sum-

marized below:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or

trailing (last) edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL

functionality is summarized below:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

174

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have

no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is

shown in the following table:

18.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in

SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is

in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the

corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the

SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The

WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,

and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as

zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI

is in Master mode (see Table 18-5). This means that the minimum SCK period will be two CPU

clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4

or lower.

The SPI interface on the ATmega48PA/88PA/168PA/328P is also used for program memory

and EEPROM downloading or uploading. See page 308 for serial programming and verification.

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

175

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

18.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File

and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-

ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

176

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19. USART0

19.1 Features
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)

• Asynchronous or Synchronous Operation

• Master or Slave Clocked Synchronous Operation

• High Resolution Baud Rate Generator

• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

• Odd or Even Parity Generation and Parity Check Supported by Hardware

• Data OverRun Detection

• Framing Error Detection

• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter

• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete

• Multi-processor Communication Mode

• Double Speed Asynchronous Communication Mode

19.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a

highly flexible serial communication device.

The USART0 can also be used in Master SPI mode, see “USART in SPI Mode” on page 204.

The Power Reduction USART bit, PRUSART0, in ”Minimizing Power Consumption” on page 42

must be disabled by writing a logical zero to it.

A simplified block diagram of the USART Transmitter is shown in Figure 19-1 on page 177. CPU

accessible I/O Registers and I/O pins are shown in bold.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from

the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.

The Clock Generation logic consists of synchronization logic for external clock input used by

synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is

only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a

serial Shift Register, Parity Generator and Control logic for handling different serial frame for-

mats. The write buffer allows a continuous transfer of data without any delay between frames.

The Receiver is the most complex part of the USART module due to its clock and data recovery

units. The recovery units are used for asynchronous data reception. In addition to the recovery

units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level

receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and

can detect Frame Error, Data OverRun and Parity Errors.

177

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 19-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2 and Table 13-9 on page 88 for USART0 pin placement.

19.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The

USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-

chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART

Control and Status Register C (UCSRnC) selects between asynchronous and synchronous

operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register

for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or

external (Slave mode). The XCKn pin is only active when using synchronous mode.

PARITY

GENERATOR

UBRRn [H:L]

UDRn(Transmit)

UCSRnA UCSRnB UCSRnC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxDn

TxDn
PIN

CONTROL

UDRn (Receive)

PIN

CONTROL

XCKn

DATA

RECOVERY

CLOCK

RECOVERY

PIN

CONTROL

TX

CONTROL

RX

CONTROL

PARITY

CHECKER

D
A

T
A

 B
U

S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver

178

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 19-2 shows a block diagram of the clock generation logic.

Figure 19-2. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master

operation.

fosc XTAL pin frequency (System Clock).

19.3.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of

operation. The description in this section refers to Figure 19-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a

programmable prescaler or baud rate generator. The down-counter, running at system clock

(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when

the UBRRnL Register is written. A clock is generated each time the counter reaches zero. This

clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the

baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-

put is used directly by the Receiver’s clock and data recovery units. However, the recovery units

use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the

UMSELn, U2Xn and DDR_XCKn bits.

Prescaling
Down-Counter

/2

UBRRn

/4 /2

foscn

UBRRn+1

Sync
Register

OSC

XCKn
Pin

txclk

U2Xn

UMSELn

DDR_XCKn

0

1

0

1

xcki

xcko

DDR_XCKn
rxclk

0

1

1

0

Edge
Detector

UCPOLn

179

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 19-1 contains equations for calculating the baud rate (in bits per second) and for calculat-

ing the UBRRn value for each mode of operation using an internally generated clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 19-9

(see page 200).

19.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has

effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling

the transfer rate for asynchronous communication. Note however that the Receiver will in this

case only use half the number of samples (reduced from 16 to 8) for data sampling and clock

recovery, and therefore a more accurate baud rate setting and system clock are required when

this mode is used. For the Transmitter, there are no downsides.

Table 19-1. Equations for Calculating Baud Rate Register Setting

Operating Mode

Equation for Calculating Baud

Rate(1)
Equation for Calculating

UBRRn Value

Asynchronous Normal mode
(U2Xn = 0)

Asynchronous Double Speed
mode (U2Xn = 1)

Synchronous Master mode

BAUD
fOSC

16 UBRRn 1+()
--= UBRRn

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

180

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this

section refers to Figure 19-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the

chance of meta-stability. The output from the synchronization register must then pass through

an edge detector before it can be used by the Transmitter and Receiver. This process intro-

duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency

is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to

add some margin to avoid possible loss of data due to frequency variations.

19.3.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input

(Slave) or clock output (Master). The dependency between the clock edges and data sampling

or data change is the same. The basic principle is that data input (on RxDn) is sampled at the

opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 19-3. Synchronous Mode XCKn Timing.

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is

used for data change. As Figure 19-3 shows, when UCPOLn is zero the data will be changed at

rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed

at falling XCKn edge and sampled at rising XCKn edge.

19.4 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop

bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of

the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

fXCK

fOSC

4
-----------<

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

181

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,

up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit

is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can

be directly followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 19-4 illustrates the possible combinations of the frame formats. Bits inside brackets are

optional.

Figure 19-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be

high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in

UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing

the setting of any of these bits will corrupt all ongoing communication for both the Receiver and

Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The

USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between

one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores

the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the

first stop bit is zero.

19.4.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the

result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1– … d3 d2 d1 d0 0

Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=

=

182

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19.5 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-

cess normally consists of setting the baud rate, setting frame format and enabling the

Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the

Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the

initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no

ongoing transmissions during the period the registers are changed. The TXCn Flag can be used

to check that the Transmitter has completed all transfers, and the RXC Flag can be used to

check that there are no unread data in the receive buffer. Note that the TXCn Flag must be

cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-

tion that are equal in functionality. The examples assume asynchronous operation using polling

(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.

For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16

Registers.

183

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parameters, dis-

able interrupts and so on. However, many applications use a fixed setting of the baud and

control registers, and for these types of applications the initialization code can be placed directly

in the main routine, or be combined with initialization code for other I/O modules.

19.6 Data Transmission – The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB

Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-

den by the USART and given the function as the Transmitter’s serial output. The baud rate,

mode of operation and frame format must be set up once before doing any transmissions. If syn-

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRnH, r17

out UBRRnL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret

C Code Example(1)

#define FOSC 1843200 // Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(void)

{

...

USART_Init(MYUBRR)

...

}

void USART_Init(unsigned int ubrr)

{

/*Set baud rate */

UBRR0H = (unsigned char)(ubrr>>8);

UBRR0L = (unsigned char)ubrr;

Enable receiver and transmitter */

UCSR0B = (1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 2stop bit */

UCSR0C = (1<<USBS0)|(3<<UCSZ00);

}

184

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

chronous operation is used, the clock on the XCKn pin will be overridden and used as

transmission clock.

19.6.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The

CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the

transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new

frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or

immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is

loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,

U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the

Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most sig-

nificant bits written to the UDRn are ignored. The USART has to be initialized before the function

can be used. For the assembly code, the data to be sent is assumed to be stored in Register

R16

Note: 1. See ”About Code Examples” on page 7.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,

before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,

the interrupt routine writes the data into the buffer.

19.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in

UCSRnB before the low byte of the character is written to UDRn. The following code examples

show a transmit function that handles 9-bit characters. For the assembly code, the data to be

sent is assumed to be stored in registers R17:R16.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)))

;

/* Put data into buffer, sends the data */

UDRn = data;

}

185

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See ”About Code Examples” on page 7.

The ninth bit can be used for indicating an address frame when using multi processor communi-

cation mode or for other protocol handling as for example synchronization.

19.6.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty

(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive

new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer

contains data to be transmitted that has not yet been moved into the Shift Register. For compat-

ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the

USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that

global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data

transmission is used, the Data Register Empty interrupt routine must either write new data to

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRnB,TXB8

sbrc r17,0

sbi UCSRnB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn))))

;

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRnB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDRn = data;

}

186

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new

interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift

Register has been shifted out and there are no new data currently present in the transmit buffer.

The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it

can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-

nication interfaces (like the RS-485 standard), where a transmitting application must enter

receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART

Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that

global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-

dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt

is executed.

19.6.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled

(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the

first stop bit of the frame that is sent.

19.6.5 Disabling the Transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongo-

ing and pending transmissions are completed, i.e., when the Transmit Shift Register and

Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter

will no longer override the TxDn pin.

19.7 Data Reception – The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the

UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn

pin is overridden by the USART and given the function as the Receiver’s serial input. The baud

rate, mode of operation and frame format must be set up once before any serial reception can

be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer

clock.

19.7.1 Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start

bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register

until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.

When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift

Register, the contents of the Shift Register will be moved into the receive buffer. The receive

buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the

Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant

bits of the data read from the UDRn will be masked to zero. The USART has to be initialized

before the function can be used.

187

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,

before reading the buffer and returning the value.

19.7.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in

UCSRnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and

UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the

UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,

FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit

characters and the status bits.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get and return received data from buffer */

return UDRn;

}

188

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The receive function example reads all the I/O Registers into the Register File before any com-

putation is done. This gives an optimal receive buffer utilization since the buffer location read will

be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRnA

in r17, UCSRnB

in r16, UDRn

; If error, return -1

andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

189

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19.7.3 Receive Compete Flag and Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-

fer. This flag is one when unread data exist in the receive buffer, and zero when the receive

buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),

the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive

Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-

rupts are enabled). When interrupt-driven data reception is used, the receive complete routine

must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-

rupt will occur once the interrupt routine terminates.

19.7.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and

Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is

that they are located in the receive buffer together with the frame for which they indicate the

error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the

receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.

Another equality for the Error Flags is that they can not be altered by software doing a write to

the flag location. However, all flags must be set to zero when the UCSRnA is written for upward

compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame

stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),

and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for

detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn

Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,

except for the first, stop bits. For compatibility with future devices, always set this bit to zero

when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A

Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-

ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there

was one or more serial frame lost between the frame last read from UDRn, and the next frame

read from UDRn. For compatibility with future devices, always write this bit to zero when writing

to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from

the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity

Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For

compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more

details see ”Parity Bit Calculation” on page 181 and ”Parity Checker” on page 189.

19.7.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-

ity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity

Checker calculates the parity of the data bits in incoming frames and compares the result with

the parity bit from the serial frame. The result of the check is stored in the receive buffer together

with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software

to check if the frame had a Parity Error.

190

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity

Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is

valid until the receive buffer (UDRn) is read.

19.7.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing

receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will

no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be

flushed when the Receiver is disabled. Remaining data in the buffer will be lost

19.7.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be

emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal

operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag

is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data

reception. The clock recovery logic is used for synchronizing the internally generated baud rate

clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-

ples and low pass filters each incoming bit, thereby improving the noise immunity of the

Receiver. The asynchronous reception operational range depends on the accuracy of the inter-

nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5

illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times

the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-

izontal arrows illustrate the synchronization variation due to the sampling process. Note the

larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples

denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Assembly Code Example(1)

USART_Flush:

sbis UCSRnA, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

191

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 19-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the

start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in

the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-

ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the

figure), to decide if a valid start bit is received. If two or more of these three samples have logical

high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts

looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-

ery logic is synchronized and the data recovery can begin. The synchronization process is

repeated for each start bit.

19.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data

recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight

states for each bit in Double Speed mode. Figure 19-6 shows the sampling of the data bits and

the parity bit. Each of the samples is given a number that is equal to the state of the recovery

unit.

Figure 19-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic

value to the three samples in the center of the received bit. The center samples are emphasized

on the figure by having the sample number inside boxes. The majority voting process is done as

follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.

If two or all three samples have low levels, the received bit is registered to be a logic 0. This

majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The

recovery process is then repeated until a complete frame is received. Including the first stop bit.

Note that the Receiver only uses the first stop bit of a frame.

Figure 19-7 on page 192 shows the sampling of the stop bit and the earliest possible beginning

of the start bit of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

192

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop

bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of

the bits used for majority voting. For Normal Speed mode, the first low level sample can be at

point marked (A) in Figure 19-7. For Double Speed mode the first low level must be delayed to

(B). (C) marks a stop bit of full length. The early start bit detection influences the operational

range of the Receiver.

19.8.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit

rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too

slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see

Table 19-2 on page 193) base frequency, the Receiver will not be able to synchronize the

frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal

receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed

mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4

for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and

SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be

accepted in relation to the receiver baud rate.

Table 19-2 on page 193 and Table 19-3 on page 193 list the maximum receiver baud rate error

that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate

variations.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---= Rfast

D 2+()S

D 1+()S SM+
-----------------------------------=

193

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

The recommendations of the maximum receiver baud rate error was made under the assump-

tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock

(XTAL) will always have some minor instability over the supply voltage range and the tempera-

ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a

resonator the system clock may differ more than 2% depending of the resonators tolerance. The

second source for the error is more controllable. The baud rate generator can not always do an

exact division of the system frequency to get the baud rate wanted. In this case an UBRRn value

that gives an acceptable low error can be used if possible.

19.9 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering

function of incoming frames received by the USART Receiver. Frames that do not contain

address information will be ignored and not put into the receive buffer. This effectively reduces

the number of incoming frames that has to be handled by the CPU, in a system with multiple

MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn

setting, but has to be used differently when it is a part of a system utilizing the Multi-processor

Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-

cates if the frame contains data or address information. If the Receiver is set up for frames with

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D

(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max

Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 19-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2Xn = 1)

D

(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max

Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0

194

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When

the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the

frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a

master MCU. This is done by first decoding an address frame to find out which MCU has been

addressed. If a particular slave MCU has been addressed, it will receive the following data

frames as normal, while the other slave MCUs will ignore the received frames until another

address frame is received.

19.9.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The

ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame

(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character

frame format.

The following procedure should be used to exchange data in Multi-processor Communication

mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the

Receiver must change between using n and n+1 character frame formats. This makes full-

duplex operation difficult since the Transmitter and Receiver uses the same character size set-

ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit

(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The

MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be

cleared when using SBI or CBI instructions.

195

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19.10 Register Description

19.10.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the

same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-

ister (TXB) will be the destination for data written to the UDRn Register location. Reading the

UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to

zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.

Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-

ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter

will load the data into the Transmit Shift Register when the Shift Register is empty. Then the

data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the

receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-

Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions

(SBIC and SBIS), since these also will change the state of the FIFO.

19.10.2 UCSRnA – USART Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive

buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive

buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be

used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and

there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-

matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing

a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see

description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn

is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

196

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Data Register Empty interrupt (see description of the UDRIEn bit). UDREn is set after a reset to

indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. I.e.,

when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the

receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.

Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive

buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a

new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this

bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the

Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer

(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-

chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-

bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to

one, all the incoming frames received by the USART Receiver that do not contain address infor-

mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed

information see ”Multi-processor Communication Mode” on page 193.

19.10.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt

will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt

will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the TXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

197

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will

be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-

ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer

invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port

operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to

zero) will not become effective until ongoing and pending transmissions are completed, i.e.,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine

data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames

with nine data bits. Must be written before writing the low bits to UDRn.

19.10.4 UCSRnC – USART Control and Status Register n C

• Bits 7:6 – UMSELn1:0 USART Mode Select

These bits select the mode of operation of the USARTn as shown in Table 19-4.

Note: 1. See ”USART in SPI Mode” on page 204 for full description of the Master SPI Mode (MSPIM)
operation

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 19-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)

198

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bits 5:4 – UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will

automatically generate and send the parity of the transmitted data bits within each frame. The

Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.

If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores

this setting.

• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is

used. The UCPOLn bit sets the relationship between data output change and data input sample,

and the synchronous clock (XCKn).

Table 19-5. UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 19-6. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 19-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

199

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

19.10.5 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be

written to zero when UBRRnH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four

most significant bits, and the UBRRnL contains the eight least significant bits of the USART

baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud

rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

19.11 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-

chronous operation can be generated by using the UBRRn settings in Table 19-9. UBRRn

values which yield an actual baud rate differing less than 0.5% from the target baud rate, are

bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise resis-

tance when the error ratings are high, especially for large serial frames (see ”Asynchronous

Operational Range” on page 192). The error values are calculated using the following equation:

Table 19-8. UCPOLn Bit Settings

UCPOLn

Transmitted Data Changed (Output of

TxDn Pin)

Received Data Sampled (Input on RxDn

Pin)

0 Rising XCKn Edge Falling XCKn Edge

1 Falling XCKn Edge Rising XCKn Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=

200

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. UBRRn = 0, Error = 0.0%

Table 19-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud

Rate

(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

201

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 19-10. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRRn = 0, Error = 0.0%

202

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 19-11. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRRn = 0, Error = 0.0%

203

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 19-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRRn = 0, Error = 0.0%

204

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

20. USART in SPI Mode

20.1 Features
• Full Duplex, Three-wire Synchronous Data Transfer

• Master Operation

• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)

• LSB First or MSB First Data Transfer (Configurable Data Order)

• Queued Operation (Double Buffered)

• High Resolution Baud Rate Generator

• High Speed Operation (fXCKmax = fCK/2)

• Flexible Interrupt Generation

20.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be

set to a master SPI compliant mode of operation.

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-

tion the SPI master control logic takes direct control over the USART resources. These

resources include the transmitter and receiver shift register and buffers, and the baud rate gen-

erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX

control logic is disabled. The USART RX and TX control logic is replaced by a common SPI

transfer control logic. However, the pin control logic and interrupt generation logic is identical in

both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the

control registers changes when using MSPIM.

20.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. For

USART MSPIM mode of operation only internal clock generation (i.e. master operation) is sup-

ported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to one

(i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should

be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-

ter mode. The baud rate or UBRRn setting can therefore be calculated using the same

equations, see Table 20-1:

205

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

20.4 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which

are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are

shown in Figure 20-1. Data bits are shifted out and latched in on opposite edges of the XCKn

signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-

ality is summarized in Table 20-2. Note that changing the setting of any of these bits will corrupt

all ongoing communication for both the Receiver and Transmitter.

Table 20-1. Equations for Calculating Baud Rate Register Setting

Operating Mode

Equation for Calculating Baud

Rate(1)
Equation for Calculating UBRRn

Value

Synchronous Master
mode BAUD

fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

Table 20-2. UCPOLn and UCPHAn Functionality-

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

206

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 20-1. UCPHAn and UCPOLn data transfer timing diagrams.

20.5 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM

mode has two valid frame formats:

• 8-bit data with MSB first

• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of

eight, are succeeding, ending with the most or least significant bit accordingly. When a complete

frame is transmitted, a new frame can directly follow it, or the communication line can be set to

an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The

Receiver and Transmitter use the same setting. Note that changing the setting of any of these

bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-

plete interrupt will then signal that the 16-bit value has been shifted out.

20.5.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The

initialization process normally consists of setting the baud rate, setting master mode of operation

(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the

Receiver. Only the transmitter can operate independently. For interrupt driven USART opera-

tion, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled) when

doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRn must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that

there is no ongoing transmissions during the period the registers are changed. The TXCn Flag

can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=

0
U

C
P

H
A

=
1

207

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag

must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-

tion that are equal in functionality. The examples assume polling (no interrupts enabled). The

baud rate is given as a function parameter. For the assembly code, the baud rate parameter is

assumed to be stored in the r17:r16 registers.

Note: 1. See ”About Code Examples” on page 7.

Assembly Code Example(1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!

out UBRRnH, r17

out UBRRnL, r18

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled
*/

UBRRn = baud;

}

208

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

20.6 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn bit in

the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation

of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling

the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.

When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given

the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer

clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-

ing to the UDRn I/O location. This is the case for both sending and receiving data since the

transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-

fer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, i.e. if an overflow occurs the character last received will be lost, not the first data in the buf-
fer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn
is not read before all transfers are completed, then byte 3 to be received will be lost, and not byte
1.

The following code examples show a simple USART in MSPIM mode transfer function based on

polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The

USART has to be initialized before the function can be used. For the assembly code, the data to

be sent is assumed to be stored in Register R16 and the data received will be available in the

same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,

before loading it with new data to be transmitted. The function then waits for data to be present

in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the

value.

209

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. See ”About Code Examples” on page 7.

20.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode

are identical in function to the normal USART operation. However, the receiver error status flags

(FE, DOR, and PE) are not in use and is always read as zero.

20.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to

the normal USART operation.

Assembly Code Example(1)

USART_MSPIM_Transfer:

; Wait for empty transmit buffer

sbis UCSRnA, UDREn

rjmp USART_MSPIM_Transfer

; Put data (r16) into buffer, sends the data

out UDRn,r16

; Wait for data to be received

USART_MSPIM_Wait_RXCn:

sbis UCSRnA, RXCn

rjmp USART_MSPIM_Wait_RXCn

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)));

/* Put data into buffer, sends the data */

UDRn = data;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)));

/* Get and return received data from buffer */

return UDRn;

}

210

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

20.7 AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit.

• The UCPHAn bit functionality is identical to the SPI CPHA bit.

• The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the

USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of

the control register bits, and that only master operation is supported by the USART in MSPIM

mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no

buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved

by setting UBRRn accordingly.

• Interrupt timing is not compatible.

• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 20-3 on page

210.

Table 20-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment

TxDn MOSI Master Out only

RxDn MISO Master In only

XCKn SCK (Functionally identical)

(N/A) SS
 Not supported by USART in
MSPIM

211

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

20.8 Register Description

The following section describes the registers used for SPI operation using the USART.

20.8.1 UDRn – USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to

normal USART operation. See “UDRn – USART I/O Data Register n” on page 195.

20.8.2 UCSRnA – USART MSPIM Control and Status Register n A

• Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive

buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive

buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be

used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and

there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-

matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing

a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see

description of the TXCIEn bit).

• Bit 5 - UDREn: USART Data Register Empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn

is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set after a reset to

indicate that the Transmitter is ready.

• Bit 4:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnA is written.

20.8.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt

will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the RXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/Write R R/W R R R R R R

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 1 1 0

212

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 6 - TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt

will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will

be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override

normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the

receive buffer. Only enabling the receiver in MSPI mode (i.e. setting RXENn=1 and TXENn=0)

has no meaning since it is the transmitter that controls the transfer clock and since only master

mode is supported.

• Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port

operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to

zero) will not become effective until ongoing and pending transmissions are completed, i.e.,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnB is written.

20.8.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bit 7:6 - UMSELn1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 20-4. See ”UCSRnC –

USART Control and Status Register n C” on page 197 for full description of the normal USART

operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDORDn,

UCPHAn, and UCPOLn can be set in the same write operation where the MSPIM is enabled.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 20-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 Reserved

1 1 Master SPI (MSPIM)

213

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 5:3 - Reserved Bits in MSPI mode

When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,

these bits must be written to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the

data word is transmitted first. Refer to the Frame Formats section page 4 for details.

• Bit 1 - UCPHAn: Clock Phase

The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last)

edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

• Bit 0 - UCPOLn: Clock Polarity

The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and

UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and

Timing section page 4 for details.

20.8.5 USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH

The function and bit description of the baud rate registers in MSPI mode is identical to normal

USART operation. See “UBRRnL and UBRRnH – USART Baud Rate Registers” on page 199.

214

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21. 2-wire Serial Interface

21.1 Features
• Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed

• Both Master and Slave Operation Supported

• Device can Operate as Transmitter or Receiver

• 7-bit Address Space Allows up to 128 Different Slave Addresses

• Multi-master Arbitration Support

• Up to 400 kHz Data Transfer Speed

• Slew-rate Limited Output Drivers

• Noise Suppression Circuitry Rejects Spikes on Bus Lines

• Fully Programmable Slave Address with General Call Support

• Address Recognition Causes Wake-up When AVR is in Sleep Mode

• Compatible with Philips’ I2C protocol

21.2 2-wire Serial Interface Bus Definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The

TWI protocol allows the systems designer to interconnect up to 128 different devices using only

two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-

ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All

devices connected to the bus have individual addresses, and mechanisms for resolving bus

contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

215

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

The PRTWI bit in ”Minimizing Power Consumption” on page 42 must be written to zero to enable

the 2-wire Serial Interface.

21.2.2 Electrical Interconnection

As depicted in Figure 21-1, both bus lines are connected to the positive supply voltage through

pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.

This implements a wired-AND function which is essential to the operation of the interface. A low

level on a TWI bus line is generated when one or more TWI devices output a zero. A high level

is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line

high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any

bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance

limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-

acteristics of the TWI is given in ”2-wire Serial Interface Characteristics” on page 321. Two

different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,

and one valid for bus speeds up to 400 kHz.

Table 21-1. TWI Terminology

Term Description

Master
The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

216

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21.3 Data Transfer and Frame Format

21.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level

of the data line must be stable when the clock line is high. The only exception to this rule is for

generating start and stop conditions.

Figure 21-2. Data Validity

21.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the

Master issues a START condition on the bus, and it is terminated when the Master issues a

STOP condition. Between a START and a STOP condition, the bus is considered busy, and no

other master should try to seize control of the bus. A special case occurs when a new START

condition is issued between a START and STOP condition. This is referred to as a REPEATED

START condition, and is used when the Master wishes to initiate a new transfer without relin-

quishing control of the bus. After a REPEATED START, the bus is considered busy until the next

STOP. This is identical to the START behavior, and therefore START is used to describe both

START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

depicted below, START and STOP conditions are signalled by changing the level of the SDA

line when the SCL line is high.

Figure 21-3. START, REPEATED START and STOP conditions

SDA

SCL

Data Stable Data Stable

Data Change

SDA

SCL

START STOPREPEATED STARTSTOP START

217

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one

READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-

tion is to be performed, otherwise a write operation should be performed. When a Slave

recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL

(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-

ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then

transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An

address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or

SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the

designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK

cycle. A general call is used when a Master wishes to transmit the same message to several

slaves in the system. When the general call address followed by a Write bit is transmitted on the

bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.

The following data packets will then be received by all the slaves that acknowledged the general

call. Note that transmitting the general call address followed by a Read bit is meaningless, as

this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 21-4. Address Packet Format

21.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and

an acknowledge bit. During a data transfer, the Master generates the clock and the START and

STOP conditions, while the Receiver is responsible for acknowledging the reception. An

Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL

cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has

received the last byte, or for some reason cannot receive any more bytes, it should inform the

Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

218

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-5. Data Packet Format

21.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets

and a STOP condition. An empty message, consisting of a START followed by a STOP condi-

tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement

handshaking between the Master and the Slave. The Slave can extend the SCL low period by

pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the

Slave, or the Slave needs extra time for processing between the data transmissions. The Slave

extending the SCL low period will not affect the SCL high period, which is determined by the

Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the

SCL duty cycle.

Figure 21-6 shows a typical data transmission. Note that several data bytes can be transmitted

between the SLA+R/W and the STOP condition, depending on the software protocol imple-

mented by the application software.

Figure 21-6. Typical Data Transmission

21.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken

in order to ensure that transmissions will proceed as normal, even if two or more masters initiate

a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the

transmission. All other masters should cease transmission when they discover that they have

lost the selection process. This selection process is called arbitration. When a contending

master discovers that it has lost the arbitration process, it should immediately switch to Slave

mode to check whether it is being addressed by the winning master. The fact that multiple

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

219

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

masters have started transmission at the same time should not be detectable to the slaves, i.e.

the data being transferred on the bus must not be corrupted.

• Different masters may use different SCL frequencies. A scheme must be devised to

synchronize the serial clocks from all masters, in order to let the transmission proceed in a

lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from

all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one

from the Master with the shortest high period. The low period of the combined clock is equal to

the low period of the Master with the longest low period. Note that all masters listen to the SCL

line, effectively starting to count their SCL high and low time-out periods when the combined

SCL line goes high or low, respectively.

Figure 21-7. SCL Synchronization Between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data. If the value read from the SDA line does not match the value the Master had output, it has

lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value

while another Master outputs a low value. The losing Master should immediately go to Slave

mode, checking if it is being addressed by the winning Master. The SDA line should be left high,

but losing masters are allowed to generate a clock signal until the end of the current data or

address packet. Arbitration will continue until only one Master remains, and this may take many

bits. If several masters are trying to address the same Slave, arbitration will continue into the

data packet.

TA
low

TA
high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TB
low

TB
high

Masters Start
Counting Low Period

Masters Start
Counting High Period

220

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-8. Arbitration Between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never

occur. This implies that in multi-master systems, all data transfers must use the same composi-

tion of SLA+R/W and data packets. In other words: All transmissions must contain the same

number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDA

A SDA

221

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 21-9. All registers

drawn in a thick line are accessible through the AVR data bus.

Figure 21-9. Overview of the TWI Module

21.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a

slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike

suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR

pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as

explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need

for external ones.

21.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-

trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status

Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the

CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note

T
W

I
U

n
it

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

222

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock

period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register.

• PrescalerValue = Value of the prescaler, see Table 21-7 on page 243.

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See Table 28-6 on page 321 for value of pull-up resistor.

21.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and

Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,

or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also

contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-

ter is not directly accessible by the application software. However, when receiving, it can be set

or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the

value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED

START, and STOP conditions. The START/STOP controller is able to detect START and STOP

conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up

if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-

ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost

an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate

status codes generated.

21.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address in the

TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the

TWAR is written to one, all incoming address bits will also be compared against the General Call

address. Upon an address match, the Control Unit is informed, allowing correct action to be

taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.

The Address Match unit is able to compare addresses even when the AVR MCU is in sleep

mode, enabling the MCU to wake up if addressed by a Master.

If another interrupt (e.g., INT0) occurs during TWI Power-down address match and wakes up the

CPU, the TWI aborts operation and return to it’s idle state. If this cause any problems, ensure

that TWI Address Match is the only enabled interrupt when entering Power-down(1).

Note: 1. This applies to all device revisions except ATmega88PA revision C or newer.

21.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the

TWI Control Register (TWCR). When an event requiring the attention of the application occurs

on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-

tus Register (TWSR) is updated with a status code identifying the event. The TWSR only

contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,

the TWSR contains a special status code indicating that no relevant status information is avail-

SCL frequency
CPU Clock frequency

16 2(TWBR) PrescalerValue()⋅+
---=

223

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application

software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

21.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like

reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,

the application software is free to carry on other operations during a TWI byte transfer. Note that

the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in

SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-

ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in

order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application

response. In this case, the TWI Status Register (TWSR) contains a value indicating the current

state of the TWI bus. The application software can then decide how the TWI should behave in

the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 21-10 is a simple example of how the application can interface to the TWI hardware. In

this example, a Master wishes to transmit a single data byte to a Slave. This description is quite

abstract, a more detailed explanation follows later in this section. A simple code example imple-

menting the desired behavior is also presented.

224

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
p
p
lic

a
ti
o
n

A
c
ti
o
n

T
W

I
H

a
rd

w
a
re

A
c
ti
o
n

225

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.

These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag is

set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for

the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted

in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been

completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one

to TWINT clears the flag. The TWI will then commence executing whatever operation was

specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code

below assumes that several definitions have been made, for example by using include-files.

226

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Assembly Code Example C Example Comments

1

ldi r16,
(1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the START
condition has been transmitted

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load SLA_W into TWDR
Register. Clear TWINT bit in
TWCR to start transmission of
address

4

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) |
(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) |
(1<<TWEN);

Load DATA into TWDR Register.
Clear TWINT bit in TWCR to
start transmission of data

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16,
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition

227

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

21.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),

Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these

modes can be used in the same application. As an example, the TWI can use MT mode to write

data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters

are present in the system, some of these might transmit data to the TWI, and then SR mode

would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described

along with figures detailing data transmission in each of the modes. These figures contain the

following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 21-12 to Figure 21-18, circles are used to indicate that the TWINT Flag is set. The

numbers in the circles show the status code held in TWSR, with the prescaler bits masked to

zero. At these points, actions must be taken by the application to continue or complete the TWI

transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-

ware action. For each status code, the required software action and details of the following serial

transfer are given in Table 21-2 to Table 21-5. Note that the prescaler bits are masked to zero in

these tables.

21.7.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver

(see Figure 21-11). In order to enter a Master mode, a START condition must be transmitted.

The format of the following address packet determines whether Master Transmitter or Master

Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-

mitted, MR mode is entered. All the status codes mentioned in this section assume that the

prescaler bits are zero or are masked to zero.

228

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-11. Data Transfer in Master Transmitter Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-

mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will

then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes

free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the

status code in TWSR will be 0x08 (see Table 21-2). In order to enter MT mode, SLA+W must be

transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be

cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-

ing value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is

set again and a number of status codes in TWSR are possible. Possible status codes in Master

mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes

is detailed in Table 21-2.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is

done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,

the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-

ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the

transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-

ing a STOP condition or a repeated START condition. A STOP condition is generated by writing

the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

229

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same

Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-

out losing control of the bus.

Table 21-2. Status codes for Master Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWIN
T

TWE
A

0x08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x28 Data byte has been transmit-
ted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x30 Data byte has been transmit-
ted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W or
data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus
becomes free

230

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-12. Formats and States in the Master Transmitter Mode

21.7.2 Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter

(Slave see Figure 21-13). In order to enter a Master mode, a START condition must be transmit-

ted. The format of the following address packet determines whether Master Transmitter or

Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R

is transmitted, MR mode is entered. All the status codes mentioned in this section assume that

the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

S

231

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-13. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to

one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI

will then test the 2-wire Serial Bus and generate a START condition as soon as the bus

becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-

ware, and the status code in TWSR will be 0x08 (See Table 21-2). In order to enter MR mode,

SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit

should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing

the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is

set again and a number of status codes in TWSR are possible. Possible status codes in Master

mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes

is detailed in Table 21-3. Received data can be read from the TWDR Register when the TWINT

Flag is set high by hardware. This scheme is repeated until the last byte has been received.

After the last byte has been received, the MR should inform the ST by sending a NACK after the

last received data byte. The transfer is ended by generating a STOP condition or a repeated

START condition. A STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same

Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

232

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-

out losing control over the bus.

Table 21-3. Status codes for Master Receiver Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0x08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R or
NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag
will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

233

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-14. Formats and States in the Master Receiver Mode

21.7.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter

(see Figure 21-15). All the status codes mentioned in this section assume that the prescaler bits

are zero or are masked to zero.

Figure 21-15. Data transfer in Slave Receiver mode

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

234

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when

addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),

otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable

the acknowledgement of the device’s own slave address or the general call address. TWSTA

and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own

slave address (or the general call address if enabled) followed by the data direction bit. If the

direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After

its own slave address and the write bit have been received, the TWINT Flag is set and a valid

status code can be read from TWSR. The status code is used to determine the appropriate soft-

ware action. The appropriate action to be taken for each status code is detailed in Table 21-4.

The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master

mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA

after the next received data byte. This can be used to indicate that the Slave is not able to

receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave

address. However, the 2-wire Serial Bus is still monitored and address recognition may resume

at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate

the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA

bit is set, the interface can still acknowledge its own slave address or the general call address by

using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and

the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by

writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-

ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be

held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present

on the bus when waking up from these Sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

235

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 21-4. Status Codes for Slave Receiver Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

236

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-16. Formats and States in the Slave Receiver Mode

21.7.4 Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver

(see Figure 21-17). All the status codes mentioned in this section assume that the prescaler bits

are zero or are masked to zero.

Figure 21-17. Data Transfer in Slave Transmitter Mode

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

Device 3 Device n

SDA

SCL

........ R1 R2

V
CC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

237

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when

addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),

otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable

the acknowledgement of the device’s own slave address or the general call address. TWSTA

and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own

slave address (or the general call address if enabled) followed by the data direction bit. If the

direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After

its own slave address and the write bit have been received, the TWINT Flag is set and a valid

status code can be read from TWSR. The status code is used to determine the appropriate soft-

ware action. The appropriate action to be taken for each status code is detailed in Table 21-5.

The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the

Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-

fer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver

transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave

mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives

all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by

transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-

ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire

Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.

This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial

Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA

bit is set, the interface can still acknowledge its own slave address or the general call address by

using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and

the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared

(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks

running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may

be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present

on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

238

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table 21-5. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler
Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

239

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-18. Formats and States in the Slave Transmitter Mode

21.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 21-6.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not

set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus

error occurs when a START or STOP condition occurs at an illegal position in the format frame.

Examples of such illegal positions are during the serial transfer of an address byte, a data byte,

or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the

TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the

TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in

TWCR are affected). The SDA and SCL lines are released, and no STOP condition is

transmitted.

21.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.

Consider for example reading data from a serial EEPROM. Typically, such a transfer involves

the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 21-6. Miscellaneous States

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWIN
T

TWE
A

0xF8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

240

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct

the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data

must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must

be changed. The Master must keep control of the bus during all these steps, and the steps

should be carried out as an atomical operation. If this principle is violated in a multi master sys-

tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the

Master will read the wrong data location. Such a change in transfer direction is accomplished by

transmitting a REPEATED START between the transmission of the address byte and reception

of the data. After a REPEATED START, the Master keeps ownership of the bus. The following

figure shows the flow in this transfer.

Figure 21-19. Combining Several TWI Modes to Access a Serial EEPROM

21.8 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultane-

ously by one or more of them. The TWI standard ensures that such situations are handled in

such a way that one of the masters will be allowed to proceed with the transfer, and that no data

will be lost in the process. An example of an arbitration situation is depicted below, where two

masters are trying to transmit data to a Slave Receiver.

Figure 21-20. An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this

case, neither the Slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same Slave with different data or direction bit. In this

case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying

to output a one on SDA while another Master outputs a zero will lose the arbitration. Losing

masters will switch to not addressed Slave mode or wait until the bus is free and transmit a new

START condition, depending on application software action.

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER

Device n

SDA

SCL

........ R1 R2

V
CC

241

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the

SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose

the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are

being addressed by the winning Master. If addressed, they will switch to SR or ST mode,

depending on the value of the READ/WRITE bit. If they are not being addressed, they will

switch to not addressed Slave mode or wait until the bus is free and transmit a new START

condition, depending on application software action.

This is summarized in Figure 21-21. Possible status values are given in circles.

Figure 21-21. Possible Status Codes Caused by Arbitration

21.9 Register Description

21.9.1 TWBR – TWI Bit Rate Register

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency

divider which generates the SCL clock frequency in the Master modes. See ”Bit Rate Generator

Unit” on page 221 for calculating bit rates.

21.9.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a

Master access by applying a START condition to the bus, to generate a Receiver acknowledge,

to generate a stop condition, and to control halting of the bus while the data to be written to the

bus are written to the TWDR. It also indicates a write collision if data is attempted written to

TWDR while the register is inaccessible.

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

242

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application

software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the

TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT

Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-

cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag

starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-

tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this

flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to

one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial

Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one

again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire

Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition

on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is

detected, and then generates a new START condition to claim the bus Master status. TWSTA

must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire

Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-

matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.

This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed

Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is

low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to

one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the

slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI

transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

243

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-

vated for as long as the TWINT Flag is high.

21.9.3 TWSR – TWI Status Register

• Bits 7..3 – TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status

codes are described later in this section. Note that the value read from TWSR contains both the

5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-

caler bits to zero when checking the Status bits. This makes status checking independent of

prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see ”Bit Rate Generator Unit” on page 221. The value of TWPS1..0 is

used in the equation.

21.9.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR

contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.

This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-

ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains

stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously

shifted in. TWDR always contains the last byte present on the bus, except after a wake up from

a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

Table 21-7. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

244

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the

ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received

on the 2-wire Serial Bus.

21.9.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of

TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,

and not needed in the Master modes. In multi master systems, TWAR must be set in masters

which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an

associated address comparator that looks for the slave address (or general call address if

enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7..1 – TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

21.9.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7..1 – TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can

mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the mask

bit is set to one then the address match logic ignores the compare between the incoming

address bit and the corresponding bit in TWAR. Figure 21-22 shown the address match logic in

detail.

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

245

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 21-22. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit

This bit is an unused bit in the ATmega48PA/88PA/168PA/328P, and will always read as zero.

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0

246

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

22. Analog Comparator

22.1 Overview

The Analog Comparator compares the input values on the positive pin AIN0 and negative pin

AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin

AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger

the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate

interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-

parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is

shown in Figure 22-1.

The Power Reduction ADC bit, PRADC, in ”Minimizing Power Consumption” on page 42 must

be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 22-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 22-1 on page 247.
2. Refer to Figure 1-1 on page 2 and Table 13-9 on page 88 for Analog Comparator pin

placement.

22.2 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-

parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be

switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in

ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX

select the input pin to replace the negative input to the Analog Comparator, as shown in Table

22-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog

Comparator

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

ADEN

(1)

247

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

.

22.3 Register Description

22.3.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the

ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written

logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed

description of this bit, see ”Analog Comparator Multiplexed Input” on page 246.

22.3.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit

can be set at any time to turn off the Analog Comparator. This will reduce power consumption in

Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be

disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is

changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog

Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-

ator. When the bandgap referance is used as input to the Analog Comparator, it will take a

Table 22-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

248

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

certain time for the voltage to stabilize. If not stabilized, the first conversion may give a wrong

value. See ”Internal Voltage Reference” on page 49

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to ACO. The

synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined

by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set

and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-

rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-

parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-

gered by the Analog Comparator. The comparator output is in this case directly connected to the

input capture front-end logic, making the comparator utilize the noise canceler and edge select

features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection

between the Analog Comparator and the input capture function exists. To make the comparator

trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask

Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The

different settings are shown in Table 22-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by

clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the

bits are changed.

Table 22-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

249

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

22.3.3 DIDR1 – Digital Input Disable Register 1

• Bit 7..2 – Res: Reserved Bits

These bits are unused bits in the ATmega48PA/88PA/168PA/328P, and will always read as

zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-

sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is

applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-

ten logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

250

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23. Analog-to-Digital Converter

23.1 Features
• 10-bit Resolution

• 0.5 LSB Integral Non-linearity

• ± 2 LSB Absolute Accuracy

• 13 - 260 µs Conversion Time

• Up to 76.9 kSPS (Up to 15 kSPS at Maximum Resolution)

• 6 Multiplexed Single Ended Input Channels

• 2 Additional Multiplexed Single Ended Input Channels (TQFP and QFN/MLF Package only)

• Temperature Sensor Input Channel

• Optional Left Adjustment for ADC Result Readout

• 0 - VCC ADC Input Voltage Range

• Selectable 1.1V ADC Reference Voltage

• Free Running or Single Conversion Mode

• Interrupt on ADC Conversion Complete

• Sleep Mode Noise Canceler

23.2 Overview

The ATmega48PA/88PA/168PA/328P features a 10-bit successive approximation ADC. The

ADC is connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage

inputs constructed from the pins of Port A. The single-ended voltage inputs refer to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is

held at a constant level during conversion. A block diagram of the ADC is shown in Figure 23-1

on page 251.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than ±0.3V

from VCC. See the paragraph ”ADC Noise Canceler” on page 256 on how to connect this pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage refer-

ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

The Power Reduction ADC bit, PRADC, in ”Minimizing Power Consumption” on page 42 must

be disabled by writing a logical zero to enable the ADC.

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-

mation. The minimum value represents GND and the maximum value represents the voltage on

the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage may be con-

nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal

voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve

noise immunity.

251

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 23-1. Analog to Digital Converter Block Schematic Operation,

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input

pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended

inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Volt-

age reference and input channel selections will not go into effect until ADEN is set. The ADC

does not consume power when ADEN is cleared, so it is recommended to switch off the ADC

before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and

ADCL. By default, the result is presented right adjusted, but can optionally be presented left

adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read

ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data

Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers

is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER

(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

F
R

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+

-

SAMPLE & HOLD
COMPARATOR

INTERNAL 1.1V

REFERENCE

MUX DECODER

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

L
A

R

C
H

A
N

N
E

L
 S

E
L

E
C

T
IO

N

A
D

C
[9

:0
]

ADC MULTIPLEXER

OUTPUT

AREF

BANDGAP

REFERENCE

PRESCALER

GND

INPUT

MUX

TEMPERATURE

SENSOR

252

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

read, neither register is updated and the result from the conversion is lost. When ADCH is read,

ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC

access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt

will trigger even if the result is lost.

23.3 Starting a Conversion

A single conversion is started by disabling the Power Reduction ADC bit, PRADC, in ”Minimizing

Power Consumption” on page 42 by writing a logical zero to it and writing a logical one to the

ADC Start Conversion bit, ADSC. This bit stays high as long as the conversion is in progress

and will be cleared by hardware when the conversion is completed. If a different data channel is

selected while a conversion is in progress, the ADC will finish the current conversion before per-

forming the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is

enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is

selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS

bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,

the ADC prescaler is reset and a conversion is started. This provides a method of starting con-

versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new

conversion will not be started. If another positive edge occurs on the trigger signal during con-

version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific

interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus

be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to

trigger a new conversion at the next interrupt event.

Figure 23-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon

as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-

stantly sampling and updating the ADC Data Register. The first conversion must be started by

writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive

conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLK
ADC

.

.

.

. EDGE
DETECTOR

ADATE

253

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to

one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be

read as one during a conversion, independently of how the conversion was started.

23.4 Prescaling and Conversion Timing

Figure 23-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50

kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the

input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency

from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.

The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously

reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion

starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched

on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for

the voltage to stabilize. If not stabilized, the first value read after the first conversion may be

wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-

sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is

complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion

mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new

conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures

a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold

takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-

tional CPU clock cycles are used for synchronization logic.

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0

ADPS1

ADPS2

C
K

/1
2
8

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN

START

254

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

In Free Running mode, a new conversion will be started immediately after the conversion com-

pletes, while ADSC remains high. For a summary of conversion times, see Table 23-1 on page

255.

Figure 23-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 23-5. ADC Timing Diagram, Single Conversion

Figure 23-6. ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS

Update

Conversion

Complete
MUX and REFS

Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger

Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion

Complete
Prescaler

Reset

ADATE

Prescaler

Reset
Sample &

Hold

MUX and REFS

Update

255

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 23-7. ADC Timing Diagram, Free Running Conversion

23.5 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary

register to which the CPU has random access. This ensures that the channels and reference

selection only takes place at a safe point during the conversion. The channel and reference

selection is continuously updated until a conversion is started. Once the conversion starts, the

channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-

tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in

ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after

ADSC is written. The user is thus advised not to write new channel or reference selection values

to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special

care must be taken when updating the ADMUX Register, in order to control which conversion

will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the

ADMUX Register is changed in this period, the user cannot tell if the next conversion is based

on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC

conversion.

Table 23-1. ADC Conversion Time

Condition

Sample & Hold

(Cycles from Start of Conversion)

Conversion Time

(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update

256

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23.5.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure

that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-

nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the

simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-

nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the

simplest method is to wait for the first conversion to complete, and then change the channel

selection. Since the next conversion has already started automatically, the next result will reflect

the previous channel selection. Subsequent conversions will reflect the new channel selection.

23.5.2 ADC Voltage Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single

ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as

either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-

ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the

external AREF pin is directly connected to the ADC, and the reference voltage can be made

more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can

also be measured at the AREF pin with a high impedance voltmeter. Note that VREF is a high

impedance source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other

reference voltage options in the application, as they will be shorted to the external voltage. If no

external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as ref-

erence selection. The first ADC conversion result after switching reference voltage source may

be inaccurate, and the user is advised to discard this result.

23.6 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise

induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC

Noise Reduction and Idle mode. To make use of this feature, the following procedure should be

used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle

mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-

ing such sleep modes to avoid excessive power consumption.

257

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23.6.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 23-8. An analog

source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-

less of whether that channel is selected as input for the ADC. When the channel is selected, the

source must drive the S/H capacitor through the series resistance (combined resistance in the

input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or

less. If such a source is used, the sampling time will be negligible. If a source with higher imped-

ance is used, the sampling time will depend on how long time the source needs to charge the

S/H capacitor, with can vary widely. The user is recommended to only use low impedance

sources with slowly varying signals, since this minimizes the required charge transfer to the S/H

capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either

kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised

to remove high frequency components with a low-pass filter before applying the signals as

inputs to the ADC.

Figure 23-8. Analog Input Circuitry

23.6.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of

analog measurements. If conversion accuracy is critical, the noise level can be reduced by

applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage via
an LC network as shown in Figure 23-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3..0] port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress. However, using the 2-wire Interface (ADC4

ADCn

IIH

1..100 kΩ

CS/H= 14 pF

VCC/2

IIL

258

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

and ADC5) will only affect the conversion on ADC4 and ADC5 and not the other ADC
channels.

Figure 23-9. ADC Power Connections

23.6.3 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps

(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at

0.5 LSB). Ideal value: 0 LSB.

G
N

D

V
C

C

P
C

5
 (

A
D

C
5

/S
C

L
)

P
C

4
 (

A
D

C
4

/S
D

A
)

P
C

3
 (

A
D

C
3

)

P
C

2
 (

A
D

C
2

)

PC1 (ADC1)

PC0 (ADC0)

ADC7

GND

AREF

AVCC

ADC6

PB5

1
0

µ
H

1
0

0
n

F
A

n
a

lo
g

 G
ro

u
n

d
 P

la
n

e

259

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 23-10. Offset Error

• Gain error: After adjusting for offset, the gain error is found as the deviation of the last transition

(0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0

LSB

Figure 23-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum

deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0

LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

260

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 23-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval

between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 23-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a

range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared to

an ideal transition for any code. This is the compound effect of offset, gain error, differential

error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

261

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23.7 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC

Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see

Table 23-3 on page 262 and Table 23-4 on page 263). 0x000 represents analog ground, and

0x3FF represents the selected reference voltage minus one LSB.

23.8 Temperature Measurement

The temperature measurement is based on an on-chip temperature sensor that is coupled to a

single ended ADC8 channel. Selecting the ADC8 channel by writing the MUX3..0 bits in ADMUX

register to "1000" enables the temperature sensor. The internal 1.1V voltage reference must

also be selected for the ADC voltage reference source in the temperature sensor measurement.

When the temperature sensor is enabled, the ADC converter can be used in single conversion

mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 23-2.

The voltage sensitivity is approximately 1 mV/°C and the accuracy of the temperature measure-

ment is +/- 10°C.

The values described in Table 23-2 are typical values. However, due to the process variation the

temperature sensor output voltage varies from one chip to another. To be capable of achieving

more accurate results the temperature measurement can be calibrated in the application soft-

ware. The software calibration requires that a calibration value is measured and stored in a

register or EEPROM for each chip, as a part of the production test. The software calibration can

be done utilizing the formula:

T = { [(ADCH << 8) | ADCL] - TOS} / k

where ADCn are the ADC data registers, k is a fixed coefficient and TOS is the temperature sen-

sor offset value determined and stored into EEPROM as a part of the production test.

ADC
VIN 1024⋅

VREF

--------------------------=

Table 23-2. Temperature vs. Sensor Output Voltage (Typical Case)

Temperature / °C -45°C +25°C +85°C

Voltage / mV 242 mV 314 mV 380 mV

262

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23.9 Register Description

23.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 23-3. If these bits are

changed during a conversion, the change will not go in effect until this conversion is complete

(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external

reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.

Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the

ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-

sions. For a complete description of this bit, see ”ADCL and ADCH – The ADC Data Register” on

page 265.

• Bit 4 – Res: Reserved Bit

This bit is an unused bit in the ATmega48PA/88PA/168PA/328P, and will always read as zero.

• Bits 3:0 – MUX3:0: Analog Channel Selection Bits

The value of these bits selects which analog inputs are connected to the ADC. See Table 23-4

for details. If these bits are changed during a conversion, the change will not go in effect until this

conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin

263

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. For Temperature Sensor.

23.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the

ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,

write this bit to one to start the first conversion. The first conversion after ADSC has been written

after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,

will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-

tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,

it returns to zero. Writing zero to this bit has no effect.

Table 23-4. Input Channel Selections

MUX3..0 Single Ended Input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 ADC8(1)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG)

1111 0V (GND)

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

264

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-

version on a positive edge of the selected trigger signal. The trigger source is selected by setting

the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The

ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.

ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-

natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-

Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI

instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-

rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the system clock frequency and the input clock

to the ADC.

Table 23-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

265

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

23.9.3 ADCL and ADCH – The ADC Data Register

23.9.3.1 ADLAR = 0

23.9.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if

the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read

ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from

the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result

is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in ”ADC Conversion Result” on

page 261.

23.9.4 ADCSRB – ADC Control and Status Register B

• Bit 7, 5:3 – Res: Reserved Bits

These bits are reserved for future use. To ensure compatibility with future devices, these bist

must be written to zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger

an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion

will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a trig-

ger source that is cleared to a trigger source that is set, will generate a positive edge on the

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

266

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running

mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

23.9.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:6 – Res: Reserved Bits

These bits are reserved for future use. To ensure compatibility with future devices, these bits

must be written to zero when DIDR0 is written.

• Bit 5:0 – ADC5D..ADC0D: ADC5..0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-

abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an

analog signal is applied to the ADC5..0 pin and the digital input from this pin is not needed, this

bit should be written logic one to reduce power consumption in the digital input buffer.

Note that ADC pins ADC7 and ADC6 do not have digital input buffers, and therefore do not

require Digital Input Disable bits.

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

267

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

24. debugWIRE On-chip Debug System

24.1 Features
• Complete Program Flow Control

• Emulates All On-chip Functions, Both Digital and Analog, except RESET Pin

• Real-time Operation

• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)

• Unlimited Number of Program Break Points (Using Software Break Points)

• Non-intrusive Operation

• Electrical Characteristics Identical to Real Device

• Automatic Configuration System

• High-Speed Operation

• Programming of Non-volatile Memories

24.2 Overview

The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the

program flow, execute AVR instructions in the CPU and to program the different non-volatile

memories.

24.3 Physical Interface

When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed,

the debugWIRE system within the target device is activated. The RESET port pin is configured

as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes the commu-

nication gateway between target and emulator.

Figure 24-1. The debugWIRE Setup

Figure 24-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emulator

connector. The system clock is not affected by debugWIRE and will always be the clock source

selected by the CKSEL Fuses.

dW

GND

dW(RESET)

VCC

1.8 - 5.5V

268

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

When designing a system where debugWIRE will be used, the following observations must be

made for correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor

is not required for debugWIRE functionality.

• Connecting the RESET pin directly to VCC will not work.

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

24.4 Software Break Points

debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a

Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-

tion replaced by the BREAK instruction will be stored. When program execution is continued, the

stored instruction will be executed before continuing from the Program memory. A break can be

inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically

handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore

reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to

end customers.

24.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as External

Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is

enabled.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep

modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should

be disabled when debugWire is not used.

24.6 Register Description

The following section describes the registers used with the debugWire.

24.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU

to the debugger. This register is only accessible by the debugWIRE and can therefore not be

used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

269

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25. Self-Programming the Flash, ATmega48PA

25.1 Overview

In ATmega48PA, there is no Read-While-Write support, and no separate Boot Loader Section.

The SPM instruction can be executed from the entire Flash.

The device provides a Self-Programming mechanism for downloading and uploading program

code by the MCU itself. The Self-Programming can use any available data interface and associ-

ated protocol to read code and write (program) that code into the Program memory.

The Program memory is updated in a page by page fashion. Before programming a page with

the data stored in the temporary page buffer, the page must be erased. The temporary page buf-

fer is filled one word at a time using SPM and the buffer can be filled either before the Page

Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example

in the temporary page buffer) before the erase, and then be re-written. When using alternative 1,

the Boot Loader provides an effective Read-Modify-Write feature which allows the user software

to first read the page, do the necessary changes, and then write back the modified data. If alter-

native 2 is used, it is not possible to read the old data while loading since the page is already

erased. The temporary page buffer can be accessed in a random sequence. It is essential that

the page address used in both the Page Erase and Page Write operation is addressing the same

page.

25.1.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “00000011” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will

be ignored during this operation.

• The CPU is halted during the Page Erase operation.

25.1.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write

“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The

content of PCWORD in the Z-register is used to address the data in the temporary buffer. The

temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in

SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than

one time to each address without erasing the temporary buffer.

270

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

25.1.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to

zero during this operation.

• The CPU is halted during the Page Write operation.

25.2 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 27-11 on page 299), the Program Counter can

be treated as having two different sections. One section, consisting of the least significant bits, is

addressing the words within a page, while the most significant bits are addressing the pages.

This is shown in Figure 26-3 on page 282. Note that the Page Erase and Page Write operations

are addressed independently. Therefore it is of major importance that the software addresses

the same page in both the Page Erase and Page Write operation.

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses the

Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 25-1. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 are listed in Table 27-11 on page 299.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

271

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25.2.1 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the

Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It

is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies

that the bit is cleared before writing to the SPMCSR Register.

25.2.2 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the

Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM

instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set

in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET

and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM

instruction is executed within three CPU cycles or no SPM instruction is executed within four

CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the

Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading

the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET

and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles

after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte

(FLB) will be loaded in the destination register as shown below.See Table 27-5 on page 296 for

a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an LPM

instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the

SPMCSR, the value of the Fuse High byte will be loaded in the destination register as shown

below. See Table 27-5 on page 296 for detailed description and mapping of the Extended Fuse

byte.

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an

LPM instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set

in the SPMCSR, the value of the Extended Fuse byte will be loaded in the destination register as

shown below. See Table 27-5 on page 296 for detailed description and mapping of the Extended

Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are

unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

Rd – – – – – – LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

272

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25.2.3 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is

too low for the CPU and the Flash to operate properly. These issues are the same as for board

level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a

regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,

the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions

is too low.

Flash corruption can easily be avoided by following these design recommendations (one is

sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

25.2.4 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 26-6 shows the typical pro-

gramming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

Table 25-1. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms

273

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25.2.5 Simple Assembly Code Example for a Boot Loader

Note that the RWWSB bit will always be read as zero in ATmega48PA. Nevertheless, it is rec-

ommended to check this bit as shown in the code example, to ensure compatibility with devices

supporting Read-While-Write.

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
rcallDo_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer

274

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

sbci YH, high(PAGESIZEB)
Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

275

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25.3 Register Description

25.3.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-

trol the Program memory operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM

ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SELF-

PRGEN bit in the SPMCSR Register is cleared. The interrupt will not be generated during

EEPROM write or SPM.

• Bit 6 – RWWSB: Read-While-Write Section Busy

This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero

in ATmega48PA.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega48PA/88PA/168PA/328P and will always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

The funct ional i ty of th is b i t in ATmega48PA is a subset of the funct ional i ty in

ATmega88PA/168PA. If the RWWSRE bit is written while filling the temporary page buffer, the

temporary page buffer will be cleared and the data will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

The funct ional i ty of th is b i t in ATmega48PA is a subset of the funct ional i ty in

ATmega88PA/168PA. An LPM instruction within three cycles after BLBSET and SELFPRGEN

are set in the SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0

in the Z-pointer) into the destination register. See ”Reading the Fuse and Lock Bits from Soft-

ware” on page 271 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four

clock cycles executes Page Write, with the data stored in the temporary buffer. The page

address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The

PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed

within four clock cycles. The CPU is halted during the entire Page Write operation.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four

clock cycles executes Page Erase. The page address is taken from the high part of the Z-

pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a

Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted dur-

ing the entire Page Write operation.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

276

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

• Bit 0 – SELFPRGEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with

either RWWSRE, BLBSET, PGWRT, or PGERS, the following SPM instruction will have a spe-

cial meaning, see description above. If only SELFPRGEN is written, the following SPM

instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.

The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an

SPM instruction, or if no SPM instruction is executed within four clock cycles. During Page Erase

and Page Write, the SELFPRGEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower

five bits will have no effect.

277

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26. Boot Loader Support – Read-While-Write Self-Programming,

ATmega88PA, ATmega168PA and ATmega328P

26.1 Features
• Read-While-Write Self-Programming

• Flexible Boot Memory Size

• High Security (Separate Boot Lock Bits for a Flexible Protection)

• Separate Fuse to Select Reset Vector

• Optimized Page(1) Size

• Code Efficient Algorithm

• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 27-11 on page 299)
used during programming. The page organization does not affect normal operation.

26.2 Overview

In ATmega88PA, ATmega168PA and ATmega328P, the Boot Loader Support provides a real

Read-While-Write Self-Programming mechanism for downloading and uploading program code

by the MCU itself. This feature allows flexible application software updates controlled by the

MCU using a Flash-resident Boot Loader program. The Boot Loader program can use any avail-

able data interface and associated protocol to read code and write (program) that code into the

Flash memory, or read the code from the program memory. The program code within the Boot

Loader section has the capability to write into the entire Flash, including the Boot Loader mem-

ory. The Boot Loader can thus even modify itself, and it can also erase itself from the code if the

feature is not needed anymore. The size of the Boot Loader memory is configurable with fuses

and the Boot Loader has two separate sets of Boot Lock bits which can be set independently.

This gives the user a unique flexibility to select different levels of protection.

26.3 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot

Loader section (see Figure 26-2). The size of the different sections is configured by the

BOOTSZ Fuses as shown in Table 26-7 on page 289 and Figure 26-2. These two sections can

have different level of protection since they have different sets of Lock bits.

26.3.1 Application Section

The Application section is the section of the Flash that is used for storing the application code.

The protection level for the Application section can be selected by the application Boot Lock bits

(Boot Lock bits 0), see Table 26-2 on page 281. The Application section can never store any

Boot Loader code since the SPM instruction is disabled when executed from the Application

section.

26.3.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-

ware must be located in the BLS since the SPM instruction can initiate a programming when

executing from the BLS only. The SPM instruction can access the entire Flash, including the

BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader

Lock bits (Boot Lock bits 1), see Table 26-3 on page 281.

278

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.4 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-

ware update is dependent on which address that is being programmed. In addition to the two

sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also

divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-

Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 26-

8 on page 289 and Figure 26-2 on page 280. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be

read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the

entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-

ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which

section that is being programmed (erased or written), not which section that actually is being

read during a Boot Loader software update.

26.4.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible

to read code from the Flash, but only code that is located in the NRWW section. During an on-

going programming, the software must ensure that the RWW section never is being read. If the

user software is trying to read code that is located inside the RWW section (i.e., by a

call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown

state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-

tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy

bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read

as logical one as long as the RWW section is blocked for reading. After a programming is com-

pleted, the RWWSB must be cleared by software before reading code located in the RWW

section. See Section “26.9.1” on page 292. for details on how to clear RWWSB.

26.4.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating

a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU

is halted during the entire Page Erase or Page Write operation.

Table 26-1. Read-While-Write Features

Which Section does the Z-

pointer Address during

the Programming?

Which Section can be

read during

Programming? CPU Halted?

Read-While-Write

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No

279

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 26-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in
NRWW Section
Can be Read During
the Operation

280

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 26-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 26-7 on page 289.

26.5 Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The

Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives

the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits can be set in software and

in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase command

only. The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash

memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not

control reading nor writing by LPM/SPM, if it is attempted.

0x0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

0x0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader

281

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

26.6 Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may

be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,

the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash

start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-

tion code is loaded, the program can start executing the application code. Note that the fuses

cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-

grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be

changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 26-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 26-7 on page 289)

282

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.7 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 27-11 on page 299), the Program Counter can

be treated as having two different sections. One section, consisting of the least significant bits, is

addressing the words within a page, while the most significant bits are addressing the pages.

This is1 shown in Figure 26-3. Note that the Page Erase and Page Write operations are

addressed independently. Therefore it is of major importance that the Boot Loader software

addresses the same page in both the Page Erase and Page Write operation. Once a program-

ming operation is initiated, the address is latched and the Z-pointer can be used for other

operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.

The content of the Z-pointer is ignored and will have no effect on the operation. The LPM

instruction does also use the Z-pointer to store the address. Since this instruction addresses the

Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 are listed in Table 26-9 on page 289.

26.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with

the data stored in the temporary page buffer, the page must be erased. The temporary page buf-

fer is filled one word at a time using SPM and the buffer can be filled either before the Page

Erase command or between a Page Erase and a Page Write operation:

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

283

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example

in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,

the Boot Loader provides an effective Read-Modify-Write feature which allows the user software

to first read the page, do the necessary changes, and then write back the modified data. If alter-

native 2 is used, it is not possible to read the old data while loading since the page is already

erased. The temporary page buffer can be accessed in a random sequence. It is essential that

the page address used in both the Page Erase and Page Write operation is addressing the same

page. See ”Simple Assembly Code Example for a Boot Loader” on page 286 for an assembly

code example.

26.8.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will

be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

26.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write

“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The

content of PCWORD in the Z-register is used to address the data in the temporary buffer. The

temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in

SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than

one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

26.8.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to

zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

284

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the

SELFPRGEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of

polling the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors

should be moved to the BLS section to avoid that an interrupt is accessing the RWW section

when it is blocked for reading. How to move the interrupts is described in ”Interrupts” on page

57.

26.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving

Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the

entire Boot Loader, and further software updates might be impossible. If it is not necessary to

change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to

protect the Boot Loader software from any internal software changes.

26.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always

blocked for reading. The user software itself must prevent that this section is addressed during

the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW

section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS

as described in ”Watchdog Timer” on page 50, or the interrupts must be disabled. Before

addressing the RWW section after the programming is completed, the user software must clear

the RWWSB by writing the RWWSRE. See ”Simple Assembly Code Example for a Boot Loader”

on page 286 for an example.

26.8.7 Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits and general Lock Bits, write the desired data to R0, write

“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

See Table 26-2 and Table 26-3 for how the different settings of the Boot Loader bits affect the

Flash access.

If bits 5..0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM

instruction is executed within four cycles after BLBSET and SELFPRGEN are set in SPMCSR.

The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to

load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future compatibility it

is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When program-

ming the Lock bits the entire Flash can be read during the operation.

26.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the

Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It

is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies

that the bit is cleared before writing to the SPMCSR Register.

26.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the

Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

285

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set

in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET

and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM

instruction is executed within three CPU cycles or no SPM instruction is executed within four

CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the

Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading

the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET

and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles

after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte

(FLB) will be loaded in the destination register as shown below. Refer to Table 27-5 on page 296

for a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-

tion is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the

SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as

shown below. Refer to Table 27-7 on page 296 for detailed description and mapping of the Fuse

High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction

is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the SPMCSR,

the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown

below. Refer to Table 27-5 on page 296 for detailed description and mapping of the Extended

Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are

unprogrammed, will be read as one.

26.8.10 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte address

given in Table 26-5 on page 286 and set the SIGRD and SPMEN bits in SPMCSR. When an

LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in

SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and

SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM

instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will

work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

286

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: All other addresses are reserved for future use.

26.8.11 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is

too low for the CPU and the Flash to operate properly. These issues are the same as for board

level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a

regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,

the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions

is too low.

Flash corruption can easily be avoided by following these design recommendations (one is

sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

26.8.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 26-6 shows the typical pro-

gramming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming time is per individual operation.

26.8.13 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included

Table 26-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Table 26-6. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms

287

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR

288

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

289

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.8.14 ATmega88PA Boot Loader Parameters

In Table 26-7 through Table 26-9, the parameters used in the description of the self programming are given.

Note: The different BOOTSZ Fuse configurations are shown in Figure 26-2 on page 280.

For details about these two section, see ”NRWW – No Read-While-Write Section” on page 278 and ”RWW – Read-While-

Write Section” on page 278

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during Self-
Programming.

Table 26-7. Boot Size Configuration, ATmega88PA

BOOTSZ1 BOOTSZ0

Boot

Size Pages

Application

Flash

Section

Boot

Loader

Flash

Section

End

Application

Section

Boot Reset Address (Start Boot Loader

Section)

1 1 128 words 4 0x000 - 0xF7F 0xF80 - 0xFFF 0xF7F 0xF80

1 0 256 words 8 0x000 - 0xEFF 0xF00 - 0xFFF 0xEFF 0xF00

0 1 512 words 16 0x000 - 0xDFF 0xE00 - 0xFFF 0xDFF 0xE00

0 0 1024 words 32 0x000 - 0xBFF 0xC00 - 0xFFF 0xBFF 0xC00

Table 26-8. Read-While-Write Limit, ATmega88PA

Section Pages Address

Read-While-Write section (RWW) 96 0x000 - 0xBFF

No Read-While-Write section (NRWW) 32 0xC00 - 0xFFF

Table 26-9. Explanation of Different Variables used in Figure 26-3 and the Mapping to the Z-pointer, ATmega88PA

Variable

Corresponding

Z-value(1) Description

PCMSB 11
Most significant bit in the Program Counter. (The Program Counter is
12 bits PC[11:0])

PAGEMSB 4
Most significant bit which is used to address the words within one
page (32 words in a page requires 5 bits PC [4:0]).

ZPCMSB Z12
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z5
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[11:5] Z12:Z6
Program counter page address: Page select, for page erase and
page write

PCWORD PC[4:0] Z5:Z1
Program counter word address: Word select, for filling temporary
buffer (must be zero during page write operation)

290

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.8.15 ATmega168PA Boot Loader Parameters

In Table 26-10 through Table 26-12, the parameters used in the description of the self programming are given.

Note: The different BOOTSZ Fuse configurations are shown in Figure 26-2 on page 280.

For details about these two section, see ”NRWW – No Read-While-Write Section” on page 278 and ”RWW – Read-While-

Write Section” on page 278

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during Self-
Programming.

Table 26-10. Boot Size Configuration, ATmega168PA

BOOTSZ1 BOOTSZ0

Boot

Size Pages

Application

Flash

Section

Boot

Loader

Flash

Section

End

Application

Section

Boot Reset Address (Start Boot

Loader Section)

1 1 128 words 2 0x0000 - 0x1F7F 0x1F80 - 0x1FFF 0x1F7F 0x1F80

1 0 256 words 4 0x0000 - 0x1EFF 0x1F00 - 0x1FFF 0x1EFF 0x1F00

0 1 512 words 8 0x0000 - 0x1DFF 0x1E00 - 0x1FFF 0x1DFF 0x1E00

0 0 1024 words 16 0x0000 - 0x1BFF 0x1C00 - 0x1FFF 0x1BFF 0x1C00

Table 26-11. Read-While-Write Limit, ATmega168PA

Section Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF

Table 26-12. Explanation of Different Variables used in Figure 26-3 and the Mapping to the Z-pointer, ATmega168PA

Variable

Corresponding

Z-value(1) Description

PCMSB 12
Most significant bit in the Program Counter. (The Program Counter
is 13 bits PC[12:0])

PAGEMSB 5
Most significant bit which is used to address the words within

one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: Page select, for page erase and
page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling temporary
buffer (must be zero during page write operation)

291

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.8.16 ATmega328P Boot Loader Parameters

In Table 26-13 through Table 26-15, the parameters used in the description of the self programming are given.

Note: The different BOOTSZ Fuse configurations are shown in Figure 26-2 on page 280.

For details about these two section, see ”NRWW – No Read-While-Write Section” on page 278 and ”RWW – Read-While-

Write Section” on page 278.

Note: 1. Z15: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during Self-
Programming.

Table 26-13. Boot Size Configuration, ATmega328P

BOOTSZ1 BOOTSZ0

Boot

Size Pages

Application

Flash

Section

Boot

Loader

Flash

Section

End

Application

Section

Boot Reset Address (Start Boot

Loader Section)

1 1 256 words 4 0x0000 - 0x3EFF 0x3F00 - 0x3FFF 0x3EFF 0x3F00

1 0 512 words 8 0x0000 - 0x3DFF 0x3E00 - 0x3FFF 0x3DFF 0x3E00

0 1 1024 words 16 0x0000 - 0x3BFF 0x3C00 - 0x3FFF 0x3BFF 0x3C00

0 0 2048 words 32 0x0000 - 0x37FF 0x3800 - 0x3FFF 0x37FF 0x3800

Table 26-14. Read-While-Write Limit, ATmega328P

Section Pages Address

Read-While-Write section (RWW) 224 0x0000 - 0x37FF

No Read-While-Write section (NRWW) 32 0x3800 - 0x3FFF

Table 26-15. Explanation of Different Variables used in Figure 26-3 and the Mapping to the Z-pointer, ATmega328P

Variable

Corresponding

Z-value(1) Description

PCMSB 13
Most significant bit in the Program Counter. (The Program Counter
is 14 bits PC[13:0])

PAGEMSB 5
Most significant bit which is used to address the words within

one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z14
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used,
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13:6] Z14:Z7
Program counter page address: Page select, for page erase and
page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling temporary
buffer (must be zero during page write operation)

292

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

26.9 Register Description

26.9.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-

trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM

ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SELF-

PRGEN bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-

ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section

cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a

Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be

cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega48PA/88PA/168PA/328P and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is

blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the

user software must wait until the programming is completed (SELFPRGEN will be cleared).

Then, if the RWWSRE bit is written to one at the same time as SELFPRGEN, the next SPM

instruction within four clock cycles re-enables the RWW section. The RWW section cannot be

re-enabled while the Flash is busy with a Page Erase or a Page Write (SELFPRGEN is set). If

the RWWSRE bit is written while the Flash is being loaded, the Flash load operation will abort

and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four

clock cycles sets Boot Lock bits and Memory Lock bits, according to the data in R0. The data in

R1 and the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared

upon completion of the Lock bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the SPMCSR

Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the

destination register. See ”Reading the Fuse and Lock Bits from Software” on page 284 for

details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four

clock cycles executes Page Write, with the data stored in the temporary buffer. The page

address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

293

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is executed

within four clock cycles. The CPU is halted during the entire Page Write operation if the NRWW

section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within four

clock cycles executes Page Erase. The page address is taken from the high part of the Z-

pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a

Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is halted dur-

ing the entire Page Write operation if the NRWW section is addressed.

• Bit 0 – SELFPRGEN: Self Programming Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with

either RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a spe-

cial meaning, see description above. If only SELFPRGEN is written, the following SPM

instruction will store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer.

The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon completion of an

SPM instruction, or if no SPM instruction is executed within four clock cycles. During Page Erase

and Page Write, the SELFPRGEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower

five bits will have no effect.

294

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27. Memory Programming

27.1 Program And Data Memory Lock Bits

The ATmega88PA/168PA/328P provides six Lock bits which can be left unprogrammed (“1”) or

can be programmed (“0”) to obtain the additional features listed in Table 27-2. The Lock bits can

only be erased to “1” with the Chip Erase command. The ATmega48PA has no separate Boot

Loader section. The SPM instruction is enabled for the whole Flash if the SELFPRGEN fuse is

programmed (“0”), otherwise it is disabled.

Notes: 1. “1” means unprogrammed, “0” means programmed.
2. Only on ATmega88PA/168PA/328P.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Table 27-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12(2) 5 Boot Lock bit 1 (unprogrammed)

BLB11(2) 4 Boot Lock bit 1 (unprogrammed)

BLB02(2) 3 Boot Lock bit 1 (unprogrammed)

BLB01(2) 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 27-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and EEPROM
is disabled in Parallel and Serial Programming mode. The Boot
Lock bits and Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

295

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

27.2 Fuse Bits

The ATmega48PA/88PA/168PA/328P has three Fuse bytes. Table 27-5 - Table 27-9 describe

briefly the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that

the fuses are read as logical zero, “0”, if they are programmed.

Table 27-3. Lock Bit Protection Modes(1)(2). Only ATmega88PA/168PA/328P.

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 27-4. Extended Fuse Byte for ATmega48PA

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN 0 Self Programming Enable 1 (unprogrammed)

296

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. The default value of BOOTSZ[1:0] results in maximum Boot Size. See ”Pin Name Mapping” on
page 300.

Note: 1. See Table 28-4 on page 318 for BODLEVEL Fuse decoding.

Table 27-5. Extended Fuse Byte for ATmega88PA/168PA

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BOOTSZ1 2

Select Boot Size
(see
Table 26-7 on page 289 and
Table 26-10 on page 290
for details)

0 (programmed)(1)

BOOTSZ0 1

Select Boot Size
(see
Table 26-7 on page 289 and
Table 26-10 on page 290
for details)

0 (programmed)(1)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 27-6. Extended Fuse Byte for ATmega328P

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BODLEVEL2(1) 2
Brown-out Detector trigger
level

1 (unprogrammed)

BODLEVEL1(1) 1
Brown-out Detector trigger
level

1 (unprogrammed)

BODLEVEL0(1) 0
Brown-out Detector trigger
level

1 (unprogrammed)

Table 27-7. Fuse High Byte for ATmega48PA/88PA/168PA

High Fuse Byte Bit No Description Default Value

RSTDISBL(1) 7 External Reset Disable 1 (unprogrammed)

DWEN 6 debugWIRE Enable 1 (unprogrammed)

SPIEN(2) 5
Enable Serial Program and
Data Downloading

0 (programmed, SPI
programming enabled)

297

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. See ”Alternate Functions of Port C” on page 85 for description of RSTDISBL Fuse.
2. The SPIEN Fuse is not accessible in serial programming mode.
3. See ”WDTCSR – Watchdog Timer Control Register” on page 54 for details.
4. See Table 28-4 on page 318 for BODLEVEL Fuse decoding.

Notes: 1. See ”Alternate Functions of Port C” on page 85 for description of RSTDISBL Fuse.
2. The SPIEN Fuse is not accessible in serial programming mode.
3. See ”WDTCSR – Watchdog Timer Control Register” on page 54 for details.
4. The default value of BOOTSZ[1:0] results in maximum Boot Size. See ”Pin Name Mapping” on

page 300.

WDTON(3) 4 Watchdog Timer Always On 1 (unprogrammed)

EESAVE 3
EEPROM memory is
preserved through the Chip
Erase

1 (unprogrammed), EEPROM
not reserved

BODLEVEL2(4) 2
Brown-out Detector trigger
level

1 (unprogrammed)

BODLEVEL1(4) 1
Brown-out Detector trigger
level

1 (unprogrammed)

BODLEVEL0(4) 0
Brown-out Detector trigger
level

1 (unprogrammed)

Table 27-8. Fuse High Byte for ATmega328P

High Fuse Byte Bit No Description Default Value

RSTDISBL(1) 7 External Reset Disable 1 (unprogrammed)

DWEN 6 debugWIRE Enable 1 (unprogrammed)

SPIEN(2) 5
Enable Serial Program and
Data Downloading

0 (programmed, SPI
programming enabled)

WDTON(3) 4 Watchdog Timer Always On 1 (unprogrammed)

EESAVE 3
EEPROM memory is
preserved through the Chip
Erase

1 (unprogrammed), EEPROM
not reserved

BOOTSZ1 2

Select Boot Size
(see
Table 26-7 on page 289,
Table 26-10 on page 290 and

Table 26-13 on page 291
for details)

0 (programmed)(4)

BOOTSZ0 1

Select Boot Size
(see
Table 26-7 on page 289,
Table 26-10 on page 290 and

Table 26-13 on page 291
for details)

0 (programmed)(4)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 27-7. Fuse High Byte for ATmega48PA/88PA/168PA (Continued)

High Fuse Byte Bit No Description Default Value

298

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 8-12 on page 33 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 8-11 on
page 33 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTB0. See ”Clock Output Buffer”
on page 35 for details.

4. See ”System Clock Prescaler” on page 35 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if

Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

27.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the

fuse values will have no effect until the part leaves Programming mode. This does not apply to

the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on

Power-up in Normal mode.

27.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This

code can be read in both serial and parallel mode, also when the device is locked. The three

bytes reside in a separate address space. For the ATmega48PA/88PA/168PA/328P the signa-

ture bytes are given in Table 27-10.

27.4 Calibration Byte

The ATmega48PA/88PA/168PA/328P has a byte calibration value for the Internal RC Oscillator.

This byte resides in the high byte of address 0x000 in the signature address space. During reset,

Table 27-9. Fuse Low Byte

Low Fuse Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Table 27-10. Device ID

Part

Signature Bytes Address

0x000 0x001 0x002

ATmega48PA 0x1E 0x92 0x0A

ATmega88PA 0x1E 0x93 0x0F

ATmega168PA 0x1E 0x94 0x0B

ATmega328P 0x1E 0x95 0x0F

299

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

this byte is automatically written into the OSCCAL Register to ensure correct frequency of the

calibrated RC Oscillator.

27.5 Page Size

27.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM

Data memory, Memory Lock bits, and Fuse bits in the ATmega48PA/88PA/168PA/328P. Pulses

are assumed to be at least 250 ns unless otherwise noted.

27.6.1 Signal Names

In this section, some pins of the ATmega48PA/88PA/168PA/328P are referenced by signal

names describing their functionality during parallel programming, see Figure 27-1 and Table 27-

13. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.

The bit coding is shown in Table 27-15.

When pulsing WR or OE, the command loaded determines the action executed. The different

Commands are shown in Table 27-16.

Table 27-11. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD

No. of

Pages PCPAGE PCMSB

ATmega48PA
2K words
(4K bytes)

32 words PC[4:0] 64 PC[10:5] 10

ATmega88PA
4K words
(8K bytes)

32 words PC[4:0] 128 PC[11:5] 11

ATmega168PA
8K words
(16K bytes)

64 words PC[5:0] 128 PC[12:6] 12

ATmega328P
16K words
(32K bytes)

64 words PC[5:0] 256 PC[13:6] 13

Table 27-12. No. of Words in a Page and No. of Pages in the EEPROM

Device

EEPROM

Size

Page

Size PCWORD

No. of

Pages PCPAGE EEAMSB

ATmega48PA 256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

ATmega88PA 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

ATmega168PA 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

ATmega328P 1K bytes 4 bytes EEA[1:0] 256 EEA[9:2] 9

300

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 27-1. Parallel Programming

Note: VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5 - 5.5V

Table 27-13. Pin Name Mapping

Signal Name in

Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is
ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I
Program memory and EEPROM Data Page
Load

BS2 PC2 I
Byte Select 2 (“0” selects Low byte, “1” selects
2’nd High byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional Data bus (Output when OE is low)

Table 27-14. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

VCC

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+4.5 - 5.5V

+4.5 - 5.5V

301

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27.7 Parallel Programming

27.7.1 Enter Programming Mode

The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins listed in Table 27-14 on page 300 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 - 5.5V between VCC and GND.

Ensure that VCC reaches at least 1.8V within the next 20 µs.

3. Wait 20 - 60 µs, and apply 11.5 - 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched.

5. Wait at least 300 µs before giving any parallel programming commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alterna-

tive algorithm can be used.

1. Set Prog_enable pins listed in Table 27-14 on page 300 to “0000”, RESET pin to 0V and
VCC to 0V.

2. Apply 4.5 - 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply 11.5 - 12.5V to RESET.

Table 27-15. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 27-16. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

302

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has been
applied to ensure the Prog_enable Signature has been latched.

5. Wait until VCC actually reaches 4.5 -5.5V before giving any parallel programming
commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

27.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient

programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the

EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word

window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes

reading.

27.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are

not reset until the program memory has been completely erased. The Fuse bits are not

changed. A Chip Erase must be performed before the Flash and/or EEPROM are

reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

27.7.4 Programming the Flash

The Flash is organized in pages, see Table 27-11 on page 299. When programming the Flash,

the program data is latched into a page buffer. This allows one page of program data to be pro-

grammed simultaneously. The following procedure describes how to program the entire Flash

memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

303

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address

the pages within the FLASH. This is illustrated in Figure 27-2 on page 304. Note that if less than

eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)

in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 27-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been

programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

304

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 27-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 27-11 on page 299.

Figure 27-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

27.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 27-12 on page 299. When programming the

EEPROM, the program data is latched into a page buffer. This allows one page of data to be

programmed simultaneously. The programming algorithm for the EEPROM data memory is as

follows (refer to ”Programming the Flash” on page 302 for details on Command, Address and

Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGH
DATA

DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

305

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 27-4 for
signal waveforms).

Figure 27-4. Programming the EEPROM Waveforms

27.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

27.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”

on page 302 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

306

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”

on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the

Flash” on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the

Flash” on page 302 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

Figure 27-5. Programming the FUSES Waveforms

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2

307

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27.7.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

27.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to ”Programming the Flash”

on page 302 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to “1”.

Figure 27-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

27.7.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

308

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27.7.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

27.7.15 Parallel Programming Characteristics

For chracteristics of the Parallel Programming, see ”Parallel Programming Characteristics” on

page 324.

27.8 Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while

RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-

put). After RESET is set low, the Programming Enable instruction needs to be executed first

before program/erase operations can be executed. NOTE, in Table 27-17 on page 309, the pin

mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal

SPI interface.

Figure 27-7. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming

operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase

instruction. The Chip Erase operation turns the content of every memory location in both the

Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods

for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V
(2)

309

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

27.8.1 Serial Programming Pin Mapping

27.8.2 Serial Programming Algorithm

When writing serial data to the ATmega48PA/88PA/168PA/328P, data is clocked on the rising

edge of SCK.

When reading data from the ATmega48PA/88PA/168PA/328P, data is clocked on the falling

edge of SCK. See Figure 27-9 for timing details.

To program and verify the ATmega48PA/88PA/168PA/328P in the serial programming mode,

the following sequence is recommended (See Serial Programming Instruction set in Table 27-19

on page 310):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at a
time by supplying the 6 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the 7 MSB of
the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before
issuing the next page (See Table 27-18). Accessing the serial programming interface
before the Flash write operation completes can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling (RDY/BSY) is not used, the
user must wait at least tWD_EEPROM before issuing the next byte (See Table 27-18). In a
chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 6 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading
the Write EEPROM Memory Page Instruction with the 7 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is

Table 27-17. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB3 I Serial Data in

MISO PB4 O Serial Data out

SCK PB5 I Serial Clock

310

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

not used, the used must wait at least tWD_EEPROM before issuing the next byte (See Table
27-18). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

27.8.3 Serial Programming Instruction set

Table 27-19 on page 310 and Figure 27-8 on page 312 describes the Instruction set.

Table 27-18. Typical Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5 ms

tWD_EEPROM 3.6 ms

tWD_ERASE 9.0 ms

Table 27-19. Serial Programming Instruction Set (Hexadecimal values)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

311

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. Not all instructions are applicable for all parts.
2. a = address.
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and Page size.
6. Instructions accessing program memory use a word address. This address may be random within the page range.
7. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until

this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 27-8 on page

312.

Write Instructions(6)

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

Table 27-19. Serial Programming Instruction Set (Hexadecimal values) (Continued)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

312

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 27-8. Serial Programming Instruction example

27.8.4 SPI Serial Programming Characteristics

Figure 27-9. Serial Programming Waveforms

For characteristics of the SPI module see “SPI Timing Characteristics” on page 319.

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

313

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28. Electrical Characteristics

28.1 Absolute Maximum Ratings*

28.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ. Max. Units

VIL
Input Low Voltage, except
XTAL1 and RESET pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIH
Input High Voltage, except
XTAL1 and RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIL1
Input Low Voltage,
XTAL1 pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIH1
Input High Voltage,
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIL2
Input Low Voltage,
RESET pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIH2
Input High Voltage,
RESET pin

VCC = 1.8V - 5.5V 0.9VCC
(2) VCC + 0.5 V

VIL3
Input Low Voltage,
RESET pin as I/O

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIH3
Input High Voltage,
RESET pin as I/O

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VOL

Output Low Voltage(3)

except RESET pin

IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.9
0.6

V

VOH

Output High Voltage(4)

except Reset pin

IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.3

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

314

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state

conditions (non-transient), the following must be observed:
ATmega48PA/88PA/168PA/328P:
1] The sum of all IOL, for ports C0 - C5, ADC7, ADC6 should not exceed 100 mA.
2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100 mA.
3] The sum of all IOL, for ports D0 - D4, RESET should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
ATmega48PA/88PA/168PA/328P:
1] The sum of all IOH, for ports C0 - C5, D0- D4, ADC7, RESET should not exceed 150 mA.
2] The sum of all IOH, for ports B0 - B5, D5 - D7, ADC6, XTAL1, XTAL2 should not exceed 150 mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

28.2.1 ATmega48PA DC Characteristics

Notes: 1. Values with “Minimizing Power Consumption” enabled (0xFF).
2. Typical values at 25°C. Maximum values are characterized values and not test limits in production.
3. The current consumption values include input leakage current.

RRST Reset Pull-up Resistor 30 60 kΩ

RPU I/O Pin Pull-up Resistor 20 50 kΩ

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
<10 40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min. Typ. Max. Units

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 1 MHz, VCC = 2V 0.2 0.5 mA

Active 4 MHz, VCC = 3V 1.2 2.5 mA

Active 8 MHz, VCC = 5V 4.0 9 mA

Idle 1 MHz, VCC = 2V 0.03 0.15 mA

Idle 4 MHz, VCC = 3V 0.21 0.7 mA

Idle 8 MHz, VCC = 5V 0.9 2.7 mA

Power-save mode(3)

32 kHz TOSC enabled,

VCC = 1.8V
0.75 µA

32 kHz TOSC enabled,

VCC = 3V
0.9 µA

Power-down mode(3)
WDT enabled, VCC = 3V 3.9 8 µA

WDT disabled, VCC = 3V 0.1 2 µA

315

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.2.2 ATmega88PA DC Characteristics

Notes: 1. Values with “Minimizing Power Consumption” enabled (0xFF).
2. Typical values at 25°C. Maximum values are test limits in production.
3. The current consumption values include input leakage current.

28.2.3 ATmega168PA DC Characteristics

Notes: 1. Values with “Minimizing Power Consumption” enabled (0xFF).
2. Typical values at 25°C. Maximum values are test limits in production.
3. The current consumption values include input leakage current.

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 1 MHz, VCC = 2V 0.2 0.5 mA

Active 4 MHz, VCC = 3V 1.2 2.5 mA

Active 8 MHz, VCC = 5V 4.1 9 mA

Idle 1 MHz, VCC = 2V 0.03 0.15 mA

Idle 4 MHz, VCC = 3V 0.18 0.7 mA

Idle 8 MHz, VCC = 5V 0.8 2.7 mA

Power-save mode(3)

32 kHz TOSC enabled,

VCC = 1.8V
0.8 µA

32 kHz TOSC enabled,

VCC = 3V
0.9 µA

Power-down mode(3)
WDT enabled, VCC = 3V 3.9 8 µA

WDT disabled, VCC = 3V 0.1 2 µA

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 1 MHz, VCC = 2V 0.2 0.5 mA

Active 4 MHz, VCC = 3V 1.2 2.5 mA

Active 8 MHz, VCC = 5V 4.2 9 mA

Idle 1 MHz, VCC = 2V 0.03 0.15 mA

Idle 4 MHz, VCC = 3V 0.2 0.7 mA

Idle 8 MHz, VCC = 5V 0.9 2.7

Power-save mode(3)

32 kHz TOSC enabled,

VCC = 1.8V
0.75 µA

32 kHz TOSC enabled,

VCC = 3V
0.83 µA

Power-down mode(3)
WDT enabled, VCC = 3V 4.1 8 µA

WDT disabled, VCC = 3V 0.1 2 µA

316

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.2.4 ATmega328P DC Characteristics

Notes: 1. Values with “Minimizing Power Consumption” enabled (0xFF).
2. Typical values at 25°C. Maximum values are test limits in production.
3. The current consumption values include input leakage current.
4. Maximum values are characterized values and not test limits in production.

28.3 Speed Grades

Maximum frequency is dependent on VCC. As shown in Figure 28-1, the Maximum Frequency vs.

VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC < 4.5V.

Figure 28-1. Maximum Frequency vs. VCC

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 1 MHz, VCC = 2V 0.3 0.5 mA

Active 4 MHz, VCC = 3V 1.7 2.5 mA

Active 8 MHz, VCC = 5V 5.2 9 mA

Idle 1 MHz, VCC = 2V 0.04 0.15 mA

Idle 4 MHz, VCC = 3V 0.3 0.7 mA

Idle 8 MHz, VCC = 5V 1.2 2.7 mA

Power-save mode(3)(4)

32 kHz TOSC enabled,

VCC = 1.8V
0.8 1.6 µA

32 kHz TOSC enabled,

VCC = 3V
0.9 2.6 µA

Power-down mode(3)
WDT enabled, VCC = 3V 4.2 8 µA

WDT disabled, VCC = 3V 0.1 2 µA

4 MHz

1.8V 2.7V 4.5V

10 MHz

20 MHz

5.5V

Safe Operating Area

317

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.4 Clock Characteristics

28.4.1 Calibrated Internal RC Oscillator Accuracy

28.4.2 External Clock Drive Waveforms

Figure 28-2. External Clock Drive Waveforms

28.4.3 External Clock Drive

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrollers
manufactured in the same process technology. These values are preliminary values representing design targets, and will be
updated after characterization of actual silicon.

Table 28-1. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory

Calibration
8.0 MHz 3V 25°C ±10%

User

Calibration
7.3 - 8.1 MHz 1.8V - 5.5V -40°C - 85°C ±1%

VIL1

VIH1

Table 28-2. External Clock Drive

Symbol Parameter

VCC= 1.8 - 5.5V VCC= 2.7 - 5.5V VCC= 4.5 - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 4 0 10 0 20 MHz

tCLCL Clock Period 250 100 50 ns

tCHCX High Time 100 40 20 ns

tCLCX Low Time 100 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 μs

tCHCL Fall Time 2.0 1.6 0.5 μs

ΔtCLCL

Change in period from
one clock cycle to the
next

2 2 2 %

318

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.5 System and Reset Characteristics

Notes: 1. Values are guidelines only.
2. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is
tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 110, 101 and 100.

Table 28-3. Reset, Brown-out and Internal Voltage Characteristics(1)

Symbol Parameter Min Typ Max Units

VPOT

Power-on Reset Threshold Voltage (rising) 1.1 1.4 1.6 V

Power-on Reset Threshold Voltage (falling)(2) 0.6 1.3 1.6 V

SRON Power-on Slope Rate 0.01 10 V/ms

VRST RESET Pin Threshold Voltage 0.2 VCC 0.9 VCC V

tRST Minimum pulse width on RESET Pin 2.5 µs

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

VBG Bandgap reference voltage
VCC=2.7
TA=25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC=2.7
TA=25°C

40 70 µs

IBG Bandgap reference current consumption
VCC=2.7
TA=25°C

10 µA

Table 28-4. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

011

Reserved
010

001

000

319

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.6 SPI Timing Characteristics

See Figure 28-3 and Figure 28-4 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK > 12 MHz

2. All DC Characteristics contained in this datasheet are based on simulation and characteriza-
tion of other AVR microcontrollers manufactured in the same process technology. These
values are preliminary values representing design targets, and will be updated after character-
ization of actual silicon.

Table 28-5. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 18-5

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

320

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 28-3. SPI Interface Timing Requirements (Master Mode)

Figure 28-4. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO

(Data Output)

SCK
(CPOL = 1)

MOSI

(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

321

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.7 2-wire Serial Interface Characteristics

Tab le 28-6 desc r ibes the requ i rements fo r dev ices connec ted to the 2 -w i re Se r ia l Bus . The

ATmega48PA/88PA/168PA/328P 2-wire Serial Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 28-5.

Notes: 1. In ATmega48PA/88PA/168PA/328P, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.

Table 28-6. 2-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and START
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

VCC 0,4V–

3mA

1000ns

Cb

----------------- Ω

VCC 0,4V–

3mA

300ns

Cb

-------------- Ω

322

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency
5. This requirement applies to all ATmega48PA/88PA/168PA/328P 2-wire Serial Interface operation. Other devices connected

to the 2-wire Serial Bus need only obey the general fSCL requirement.

Figure 28-5. 2-wire Serial Bus Timing

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

323

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.8 ADC Characteristics

Note: 1. AVCC absolute min/max: 1.8V/5.5V

Table 28-7. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy (Including
INL, DNL, quantization error,
gain and offset error)

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1 MHz

4.5 LSB

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

Noise Reduction Mode

2 LSB

VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode

4.5 LSB

Integral Non-Linearity (INL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.5 LSB

Differential Non-Linearity
(DNL)

VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.25 LSB

Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2 LSB

Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2 LSB

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency 50 1000 kHz

AVCC
(1) Analog Supply Voltage VCC - 0.3 VCC + 0.3 V

VREF Reference Voltage 1.0 AVCC V

VIN Input Voltage GND VREF V

Input Bandwidth 38.5 kHz

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

324

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

28.9 Parallel Programming Characteristics

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

Table 28-8. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

325

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 28-6. Parallel Programming Timing, Including some General Timing Requirements

Figure 28-7. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to load-
ing operation.

Figure 28-8. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 28-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to read-
ing operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

326

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29. Typical Characteristics
The following charts show typical behavior. These figures are not tested during manufacturing.

All current consumption measurements are performed with all I/O pins configured as inputs and

with internal pull-ups enabled. A square wave generator with rail-to-rail output is used as clock

source.

All Active- and Idle current consumption measurements are done with all bits in the PRR register

set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is dis-

abled during these measurements. The ”ATmega88PA: Supply Current of IO Modules” on page

356 and page 380 shows the additional current consumption compared to ICC Active and ICC Idle

for every I/O module controlled by the Power Reduction Register. See ”Power Reduction Regis-

ter” on page 42 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating

frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-

ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where

CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to

function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer

enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-

rent drawn by the Watchdog Timer.

327

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1 ATmega48PA Typical Characteristics

29.1.1 Active Supply Current

Figure 29-1. ATmega48PA: Active Supply Current vs. Low Frequency (0.1-1.0 MHz)

Figure 29-2. ATmega48PA: Active Supply Current vs. Frequency (1-20 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

328

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-3. ATmega48PA: Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

Figure 29-4. ATmega48PA: Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

85 °C

25 °C
-40 °C

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C
25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

329

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-5. ATmega48PA: Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

29.1.2 Idle Supply Current

Figure 29-6. ATmega48PA: Idle Supply Current vs. Low Frequency (0.1-1.0 MHz)

85 °C
25 °C

-40 °C

0

1

2

3

4

5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

330

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-7. ATmega48PA: Idle Supply Current vs. Frequency (1-20 MHz)

Figure 29-8. ATmega48PA: Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

85 °C

25 °C

-40 °C

0

0.007

0.014

0.021

0.028

0.035

0.042

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

331

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-9. ATmega48PA: Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 29-10. ATmega48PA: Idle Supply Current vs. Vcc (Internal RC Oscillator, 8 MHz)

85 °C
25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C
25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

332

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.3 ATmega48PA: Supply Current of IO Modules

The tables and formulas below can be used to calculate the additional current consumption for

the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules

are controlled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for

details.

It is possible to calculate the typical current consumption based on the numbers from Table 29-2

on page 332 for other VCC and frequency settings than listed in Table 29-1 on page 332.

Example Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI enabled

at VCC = 2.0V and F = 1MHz. From Table 29-2 on page 332, third column, we see that we need

to add 11.2% for the TIMER1, 22.1% for the ADC, and 17.6% for the SPI module. Reading from

Figure 29-6 on page 329, we find that the idle current consumption is ~0.028 mA at VCC = 2.0V

and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI enabled,

gives:

Table 29-1. ATmega48PA: Additional Current Consumption for the different I/O modules
(absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz

PRUSART0 2.9 uA 20.7 uA 97.4 uA

PRTWI 6.0 uA 44.8 uA 219.7 uA

PRTIM2 5.0 uA 34.5 uA 141.3 uA

PRTIM1 3.6 uA 24.4 uA 107.7 uA

PRTIM0 1.4 uA 9.5 uA 38.4 uA

PRSPI 5.0 uA 38.0 uA 190.4 uA

PRADC 6.1 uA 47.4 uA 244.7 uA

Table 29-2. ATmega48PA: Additional Current Consumption (percentage) in Active and Idle
mode

PRR bit

Additional Current consumption

compared to Active with external

clock (see Figure 29-1 on page

327 and Figure 29-2 on page 327)

Additional Current consumption

compared to Idle with external

clock (see Figure 29-6 on page

329 and Figure 29-7 on page 330)

PRUSART0 1.8% 11.4%

PRTWI 3.9% 20.6%

PRTIM2 2.9% 15.7%

PRTIM1 2.1% 11.2%

PRTIM0 0.8% 4.2%

PRSPI 3.3% 17.6%

PRADC 4.2% 22.1%

ICC total 0.028 mA (1 + 0.112 + 0.221 + 0.176)⋅ 0.042 mA≈ ≈

333

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.4 Power-down Supply Current

Figure 29-11. ATmega48PA: Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 29-12. ATmega48PA: Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

0

2

4

6

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

334

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.5 Power-save Supply Current

Figure 29-13. ATmega48PA: Power-Save Supply Current vs. VCC (Watchdog Timer Disabled
and 32 kHz Crystal Oscillator Running)

29.1.6 Standby Supply Current

Figure 29-14. ATmega48PA: Standby Supply Current vs. Vcc (Watchdog Timer Disabled)

85 °C

25 °C

-40 °C

0

0.4

0.8

1.2

1.6

2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

 6MHz_xtal

 6MHz_res

 4MHz_xtal
 4MHz_res

 450kHz_res

 2MHz_xtal
 2MHz_res

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

335

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.7 Pin Pull-Up

Figure 29-15. ATmega48PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8 V)

Figure 29-16. ATmega48PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7 V)

85 °C
25 °C

-40 °C0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C
0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

u
A

)

336

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-17. ATmega48PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5 V)

Figure 29-18. ATmega48PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8 V)

85 °C
25 °C

-40 °C
0

20

40

60

80

100

120

140

0 1 2 3 4 5

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VRESET (V)

I R
E

S
E

T
 (

u
A

)

337

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-19. ATmega48PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7 V)

Figure 29-20. ATmega48PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5 V)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)

85 °C

25 °C
-40 °C

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

VRESET (V)

I R
E

S
E

T
 (

u
A

)

338

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.8 Pin Driver Strength

Figure 29-21. ATmega48PA: I/O Pin Output Voltage vs. Sink Current(VCC = 3 V)

Figure 29-22. ATmega48PA: I/O Pin Output Voltage vs. Sink Current(VCC = 5 V)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

339

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-23. ATmega48PA: I/O Pin Output Voltage vs. Source Current(Vcc = 3 V)

Figure 29-24. ATmega48PA: I/O Pin Output Voltage vs. Source Current(VCC = 5 V)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

85 °C

25 °C

-40 °C

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

340

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.9 Pin Threshold and Hysteresis

Figure 29-25. ATmega48PA: I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

Figure 29-26. ATmega48PA: I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

341

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-27. ATmega48PA: I/O Pin Input Hysteresis vs. VCC

Figure 29-28. ATmega48PA: Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

342

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-29. ATmega48PA: Reset Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

Figure 29-30. ATmega48PA: Reset Pin Input Hysteresis vs. VCC

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C
25 °C

-40 °C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

343

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.10 BOD Threshold

Figure 29-31. ATmega48PA: BOD Thresholds vs. Temperature (BODLEVEL is 1.8 V)

Figure 29-32. ATmega48PA: BOD Thresholds vs. Temperature (BODLEVEL is 2.7 V)

Rising Vcc

Falling Vcc

1.79

1.8

1.81

1.82

1.83

1.84

1.85

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

Rising Vcc

Falling Vcc

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

344

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-33. ATmega48PA: BOD Thresholds vs. Temperature (BODLEVEL is 4.3 V)

29.1.11 Internal Oscilllator Speed

Figure 29-34. ATmega48PA: Watchdog Oscillator Frequency vs. Temperature

Rising Vcc

Falling Vcc

4.24

4.26

4.28

4.3

4.32

4.34

4.36

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

5.5 V
4.0 V
3.3 V
2.7 V

104

106

108

110

112

114

116

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

F
R

C
 (

k
H

z
)

345

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-35. ATmega48PA: Watchdog Oscillator Frequency vs. VCC

Figure 29-36. ATmega48PA: Calibrated 8 MHz RC Oscillator Frequency vs. VCC

85 °C

25 °C

-40 °C

106

108

110

112

114

116

118

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

k
H

z
)

85 °C

25 °C

-40 °C

7.6

7.7

7.8

7.9

8

8.1

8.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

346

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-37. ATmega48PA: Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 29-38. ATmega48PA: Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

5.5 V
3.3 V

1.8 V

7.6

7.7

7.8

7.9

8

8.1

8.2

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

F
R

C
 (

M
H

z
)

85 °C
25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z
)

347

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1.12 Current Consumption of Peripheral Units

Figure 29-39. ATmega48PA: ADC Current vs. VCC (AREF = AVCC)

Figure 29-40. ATmega48PA: Analog Comparator Current vs. VCC

85 °C
25 °C

-40 °C

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

348

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-41. ATmega48PA: AREF External Reference Current vs. VCC

Figure 29-42. ATmega48PA: Brownout Detector Current vs. VCC

85 °C
25 °C

-40 °C

0

20

40

60

80

100

120

140

160

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C
-40 °C

0

8

16

24

32

40

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

349

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-43. ATmega48PA: Programming Current vs. VCC

29.1.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-44. ATmega48PA: Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

350

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-45. ATmega48PA: Reset Supply Current vs. Frequency (1 - 20 MHz)

Figure 29-46. ATmega48PA: Minimum Reset Pulse width vs. VCC

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

85 °C
25 °C

-40 °C

0

200

400

600

800

1000

1200

1400

1600

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u
ls

e
w

id
th

 (
n
s
)

351

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2 ATmega88PA Typical Characteristics

29.2.1 Active Supply Current

Figure 29-47. ATmega88PA: Active Supply Current vs. Low Frequency (0.1-1.0 MHz)

Figure 29-48. ATmega88PA: Active Supply Current vs. Frequency (1 - 20 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

352

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-49. ATmega88PA: Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

Figure 29-50. ATmega88PA: Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

85 °C

25 °C

-40 °C

0

0.03

0.06

0.09

0.12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

353

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-51. ATmega88PA: Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

29.2.2 Idle Supply Current

Figure 29-52. ATmega88PA: Idle Supply Current vs. Low Frequency (0.1-1.0 MHz)

85 °C

25 °C

-40 °C

0

1

2

3

4

5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.03

0.06

0.09

0.12

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

354

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-53. ATmega88PA: Idle Supply Current vs. Frequency (1 - 20 MHz)

Figure 29-54. ATmega88PA: Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)
4.0 V

3.3 V

2.7 V

1.8 V

85 °C

25 °C

-40 °C

0

0.01

0.02

0.03

0.04

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

355

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-55. ATmega88PA: Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 29-56. ATmega88PA: Idle Supply Current vs. Vcc (Internal RC Oscillator, 8 MHz)

85 °C

25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C
25 °C

-40 °C

0

0.3

0.6

0.9

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

356

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.3 ATmega88PA: Supply Current of IO Modules

The tables and formulas below can be used to calculate the additional current consumption for

the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules

are controlled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for

details.

It is possible to calculate the typical current consumption based on the numbers from Table 29-4

on page 356 for other VCC and frequency settings than listed in Table 29-3 on page 356.

Example Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI enabled

at VCC = 2.0V and F = 1MHz. From Table 29-4 on page 356, third column, we see that we need

to add 13.6% for the TIMER1, 26.3% for the ADC, and 21.5% for the SPI module. Reading from

Figure 29-52 on page 353, we find that the idle current consumption is ~0.027 mA at VCC = 2.0V

and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI enabled,

gives:

Table 29-3. ATmega88PA: Additional Current Consumption for the different I/O modules
(absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz

PRUSART0 3.0 uA 21.3 uA 97.9 uA

PRTWI 6.1 uA 45.4 uA 219.0 uA

PRTIM2 5.2 uA 35.2 uA 149.5 uA

PRTIM1 3.8 uA 25.6 uA 110.0 uA

PRTIM0 1.5 uA 9.8 uA 39.6 uA

PRSPI 5.2 uA 40.0 uA 199.6 uA

PRADC 6.3 uA 48.7 uA 247.0 uA

Table 29-4. ATmega88PA: Additional Current Consumption (percentage) in Active and Idle
mode

PRR bit

Additional Current consumption

compared to Active with external

clock (see Figure 29-47 on page

351 and Figure 29-48 on page

351)

Additional Current consumption

compared to Idle with external

clock (see Figure 29-52 on page

353 and Figure 29-53 on page

354)

PRUSART0 1.8% 11.4%

PRTWI 3.9% 24.4%

PRTIM2 2.9% 18.6%

PRTIM1 2.1% 13.6%

PRTIM0 0.8% 5.2%

PRSPI 3.5% 21.5%

PRADC 4.2% 26.3%

ICC total 0.027 mA (1 + 0.136 + 0.263 + 0.215)⋅ 0.043 mA≈ ≈

357

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.4 Power-down Supply Current

Figure 29-57. ATmega88PA: Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 29-58. ATmega88PA: Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

85 °C

25 °C

-40 °C0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C

25 °C

-40 °C

0

2

4

6

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

358

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.5 Power-save Supply Current

Figure 29-59. ATmega88PA: Power-Save Supply Current vs. VCC (Watchdog Timer Disabled
and 32 kHz Crystal Oscillator Running)

29.2.6 Standby Supply Current

Figure 29-60. ATmega88PA: Standby Supply Current vs. Vcc (Watchdog Timer Disabled)

WATCHDOG TIMER DISABLED and 32 kHz CRYSTAL OSCILLATOR RUNNING

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)
85 °C

25 °C

-40 °C

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

6MHz_xtal
6MHz_res

4MHz_xtal
4MHz_res

450kHz_res

2MHz_xtal
2MHz_res

359

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.7 Pin Pull-Up

Figure 29-61. ATmega88PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8 V)

Figure 29-62. ATmega88PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7 V)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

u
A

)

360

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-63. ATmega88PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5 V)

Figure 29-64. ATmega88PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8 V)

85 °C

25 °C

-40 °C
0

20

40

60

80

100

120

140

0 1 2 3 4 5

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VRESET (V)

I R
E

S
E

T
 (

u
A

)

361

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-65. ATmega88PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7 V)

Figure 29-66. ATmega88PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5 V)

85 °C
0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)

-40 °C

25 °C

85 °C

-40 °C

25 °C

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

VRESET (V)

I R
E

S
E

T
 (

u
A

)

362

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.8 Pin Driver Strength

Figure 29-67. ATmega88PA: I/O Pin Output Voltage vs. Sink Current (VCC = 3 V)

Figure 29-68. ATmega88PA: I/O Pin Output Voltage vs. Sink Current (VCC = 5 V)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

363

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-69. ATmega88PA: I/O Pin Output Voltage vs. Source Current (Vcc = 3 V)

Figure 29-70. ATmega88PA: I/O Pin Output Voltage vs. Source Current (VCC = 5 V)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

85 °C

25 °C

-40 °C

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

364

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.9 Pin Threshold and Hysteresis

Figure 29-71. ATmega88PA: I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

Figure 29-72. ATmega88PA: I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

365

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-73. ATmega88PA: I/O Pin Input Hysteresis vs. VCC

Figure 29-74. ATmega88PA: Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

85 °C

25 °C

-40 °C

0

0.3

0.6

0.9

1.2

1.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

366

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-75. ATmega88PA: Reset Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

Figure 29-76. ATmega88PA: Reset Pin Input Hysteresis vs. VCC

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

367

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.10 BOD Threshold

Figure 29-77. ATmega88PA: BOD Thresholds vs. Temperature (BODLEVEL is 1.8 V)

Figure 29-78. ATmega88PA: BOD Thresholds vs. Temperature (BODLEVEL is 2.7 V)

Rising Vcc

Falling Vcc

1.77

1.78

1.79

1.8

1.81

1.82

1.83

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

Rising Vcc

Falling Vcc

2.64

2.66

2.68

2.7

2.72

2.74

2.76

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

368

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-79. ATmega88PA: BOD Thresholds vs. Temperature (BODLEVEL is 4.3 V)

29.2.11 Internal Oscilllator Speed

Figure 29-80. ATmega88PA: Watchdog Oscillator Frequency vs. Temperature

Rising Vcc

Falling Vcc

4.22

4.24

4.26

4.28

4.3

4.32

4.34

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

5.5 V

4.0 V

3.3 V

2.7 V

105

106

107

108

109

110

111

112

113

114

-40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

k
H

z
)

369

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-81. ATmega88PA: Watchdog Oscillator Frequency vs. VCC

Figure 29-82. ATmega88PA: Calibrated 8 MHz RC Oscillator Frequency vs. VCC

85 °C

25 °C

-40 °C

104

106

108

110

112

114

116

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

k
H

z
)

85 °C

25 °C

-40 °C

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

370

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-83. ATmega88PA: Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 29-84. ATmega88PA: Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

5.5 V

4.0 V

3.0 V

7.8

7.9

8

8.1

8.2

8.3

-40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

M
H

z
)

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

14

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z
)

371

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.2.12 Current Consumption of Peripheral Units

Figure 29-85. ATmega88PA: ADC Current vs. VCC (AREF = AVCC)

Figure 29-86. ATmega88PA: Analog Comparator Current vs. VCC

85 °C
25 °C

-40 °C

0

50

100

150

200

250

300

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

372

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-87. ATmega88PA: AREF External Reference Current vs. VCC

Figure 29-88. ATmega88PA: Brownout Detector Current vs. VCC

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

373

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-89. ATmega88PA: Programming Current vs. VCC

29.2.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-90. ATmega88PA: Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

85 °C

25 °C
-40 °C

0

1

2

3

4

5

6

7

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

374

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-91. ATmega88PA: Reset Supply Current vs. Frequency (1 - 20 MHz)

Figure 29-92. ATmega88PA: Minimum Reset Pulse width vs. VCC

5.5 V

5.0 V

4.5 V

0

0.4

0.8

1.2

1.6

2

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

4.0 V

3.3 V

85 °C
25 °C

-40 °C

0

200

400

600

800

1000

1200

1400

1600

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u
ls

e
w

id
th

 (
n
s
)

375

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3 ATmega168PA Typical Characteristics

29.3.1 Active Supply Current

Figure 29-93. ATmega168PA: Active Supply Current vs. Low Frequency (0.1-1.0 MHz)

Figure 29-94. ATmega168PA: Active Supply Current vs. Frequency (1-20 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

4.0 V

3.3 V

2.7 V

376

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-95. ATmega168PA: Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

Figure 29-96. ATmega168PA: Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

85 °C

25 °C

-40 °C

0

0.03

0.06

0.09

0.12

0.15

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

377

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-97. ATmega168PA: Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

29.3.2 Idle Supply Current

Figure 29-98. ATmega168PA: Idle Supply Current vs. Low Frequency (0.1-1.0 MHz)

25 °C

-40 °C

0

1

2

3

4

5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.03

0.06

0.09

0.12

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

378

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-99. ATmega168PA: Idle Supply Current vs. Frequency (1-20 MHz)

Figure 29-100.IATmega168PA: dle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

4.0 V

3.3 V

85 °C

25 °C

-40 °C

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

379

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-101.ATmega168PA: Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 29-102.ATmega168PA: Idle Supply Current vs. Vcc (Internal RC Oscillator, 8 MHz)

85 °C
25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C
25 °C

-40 °C

0

0.3

0.6

0.9

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

380

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.3 ATmega168PA Supply Current of IO Modules

The tables and formulas below can be used to calculate the additional current consumption for

the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules

are controlled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for

details.

It is possible to calculate the typical current consumption based on the numbers from Table 29-6

on page 380 for other VCC and frequency settings than listed in Table 29-5 on page 380.

Example Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI enabled

at VCC = 2.0V and F = 1MHz. From Table 29-6 on page 380, third column, we see that we need

to add 10.3% for the TIMER1, 20.3% for the ADC, and 17.1% for the SPI module. Reading from

Figure 29-98 on page 377, we find that the idle current consumption is ~0.027 mA at VCC = 2.0V

and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI enabled,

gives:

Table 29-5. ATmega168PA: Additional Current Consumption for the different I/O modules
(absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz

PRUSART0 2.86 uA 20.3 uA 52.2 uA

PRTWI 6.00 uA 44.1uA 122.0 uA

PRTIM2 4.97 uA 33.2 uA 79.8 uA

PRTIM1 3.50 uA 23.0 uA 55.3 uA

PRTIM0 1.43 uA 9.2 uA 21.4 uA

PRSPI 5.01 uA 38.6 uA 111.4 uA

PRADC 6.34 uA 45.7 uA 123.6 uA

Table 29-6. ATmega168PA: Additional Current Consumption (percentage) in Active and Idle
mode

PRR bit

Additional Current consumption

compared to Active with external

clock (see Figure 29-93 on page

375 and Figure 29-94 on page

375)

Additional Current consumption

compared to Idle with external

clock (see Figure 29-98 on page

377 and Figure 29-99 on page

378)

PRUSART0 1.5% 8.9%

PRTWI 3.2% 19.5%

PRTIM2 2.4% 14.8%

PRTIM1 1.7% 10.3%

PRTIM0 0.7% 4.1%

PRSPI 2.9% 17.1%

PRADC 3.4% 20.3%

ICC total 0.027 mA (1 + 0.103 + 0.203 + 0.171)⋅ 0.040 mA≈ ≈

381

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.4 Power-down Supply Current

Figure 29-103.ATmega168PA: Power-Down Supply Current vs. VCC (Watchdog Timer
Disabled)

Figure 29-104.ATmega168PA: Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

85 °C

25 °C

-40 °C
0

0.2

0.4

0.6

0.8

1

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

0

2

4

6

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

382

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.5 Power-save Supply Current

Figure 29-105.ATmega168PA: Power-Save Supply Current vs. VCC (Watchdog Timer Disabled
and 32 kHz Crystal Oscillator Running)

29.3.6 Standby Supply Current

Figure 29-106.ATmega168PA: Standby Supply Current vs. Vcc (Watchdog Timer Disabled)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

 6MHz_xtal
 6MHz_res

 4MHz_xtal
 4MHz_res

 450kHz_res

 2MHz_xtal
 2MHz_res

 1MHz_res

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (MHz)

I C
C
(m

A
)

383

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.7 Pin Pull-Up

Figure 29-107.ATmega168PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8 V)

Figure 29-108.ATmega168PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7 V)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

u
A

)

384

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-109.ATmega168PA: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5 V)

Figure 29-110.ATmega168PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage
(VCC = 1.8 V)

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VRESET (V)

I R
E

S
E

T
 (

u
A

)

385

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-111.ATmega168PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage
(VCC = 2.7 V)

Figure 29-112.ATmega168PA: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

85 °C
0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)

-40 °C

25 °C

0

20

40

60

80

100

120

0 1 2 3 4 5

VRESET (V)

I R
E

S
E

T
 (

u
A

)

85 °C

-40 °C

25 °C

386

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.8 Pin Driver Strength

Figure 29-113.ATmega168PA: I/O Pin Output Voltage vs. Sink Current(VCC = 3 V)

Figure 29-114.ATmega168PA: I/O Pin Output Voltage vs. Sink Current(VCC = 5 V)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20

IOL (mA)

V
O

L
 (

V
)

387

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-115.ATmega168PA: I/O Pin Output Voltage vs. Source Current(Vcc = 3 V)

Figure 29-116.ATmega168PA: I/O Pin Output Voltage vs. Source Current(VCC = 5 V)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

85 °C

25 °C

-40 °C

4

4.2

4.4

4.6

4.8

5

0 4 8 12 16 20

IOH (mA)

V
O

H
 (

V
)

388

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.9 Pin Threshold and Hysteresis

Figure 29-117.ATmega168PA: I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

Figure 29-118.ATmega168PA: I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

389

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-119.ATmega168PA: I/O Pin Input Hysteresis vs. VCC

Figure 29-120.ATmega168PA: Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

85 °C

25 °C

-40 °C

0

0.3

0.6

0.9

1.2

1.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

390

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-121.ATmega168PA: Reset Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

Figure 29-122.ATmega168PA: Reset Pin Input Hysteresis vs. VCC

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

s
h
o
ld

 (
V

)

85 °C

25 °C

-40 °C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

391

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.10 BOD Threshold

Figure 29-123.ATmega168PA: BOD Thresholds vs. Temperature (BODLEVEL is 1.8 V)

Figure 29-124.ATmega168PA: BOD Thresholds vs. Temperature (BODLEVEL is 2.7 V)

Rising Vcc

Falling Vcc

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

Rising Vcc

Falling Vcc

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

392

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-125.ATmega168PA: BOD Thresholds vs. Temperature (BODLEVEL is 4.3 V)

29.3.11 Internal Oscilllator Speed

Figure 29-126.ATmega168PA: Watchdog Oscillator Frequency vs. Temperature

Rising Vcc

Falling Vcc

4.2

4.22

4.24

4.26

4.28

4.3

4.32

4.34

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

5.5 V

3.3 V

2.7 V

111

113

115

117

119

121

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

F
R

C
 (

k
H

z
)

393

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-127.ATmega168PA: Watchdog Oscillator Frequency vs. VCC

Figure 29-128.ATmega168PA: Calibrated 8 MHz RC Oscillator Frequency vs. VCC

85 °C

25 °C

-40 °C

110

112

114

116

118

120

122

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

k
H

z
)

85 °C

25 °C

-40 °C

7.4

7.6

7.8

8

8.2

8,4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

394

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-129.ATmega168PA: Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 29-130.ATmega168PA: Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

5.5 V
5.0 V
2.7 V

1.8 V

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

F
R

C
 (

M
H

z
)

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z
)

395

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.3.12 Current Consumption of Peripheral Units

Figure 29-131.ATmega168PA: ADC Current vs. VCC (AREF = AVCC)

Figure 29-132.ATmega168PA: Analog Comparator Current vs. VCC

85 °C
25 °C

-40 °C

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

396

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-133.ATmega168PA: AREF External Reference Current vs. VCC

Figure 29-134.ATmega168PA: Brownout Detector Current vs. VCC

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

180

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C

25 °C

-40 °C

12

14

16

18

20

22

24

26

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

397

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-135.ATmega168PA: Programming Current vs. VCC

29.3.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-136.ATmega168PA: Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

85 °C

25 °C

-40 °C

0

2

4

6

8

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

398

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-137.ATmega168PA: Reset Supply Current vs. Frequency (1 - 20 MHz)

Figure 29-138.ATmega168PA: Minimum Reset Pulse width vs. VCC

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

85 °C

25 °C

-40 °C

0

250

500

750

1000

1250

1500

1750

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u
ls

e
w

id
th

 (
n
s
)

399

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4 ATmega328P Typical Characteristics

29.4.1 Active Supply Current

Figure 29-139.ATmega328P: Active Supply Current vs. Low Frequency (0.1-1.0 MHz)

Figure 29-140.ATmega328P: Active Supply Current vs. Frequency (1-20 MHz)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

400

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-141.ATmega328P: Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

Figure 29-142.ATmega328P: Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

85 °C

25 °C

-40 °C

0

0.04

0.08

0.12

0.16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

401

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-143.ATmega328P: Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

29.4.2 Idle Supply Current

Figure 29-144.ATmega328P: Idle Supply Current vs. Low Frequency (0.1-1.0 MHz)

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.04

0.08

0.12

0.16

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

402

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-145.ATmega328P: Idle Supply Current vs. Frequency (1-20 MHz)

Figure 29-146.ATmega328P: Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

,

85 °C

25 °C

-40 °C

0

0.01

0.02

0.03

0.04

0.05

0.06

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

403

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-147.ATmega328P: Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 29-148.ATmega328P: Idle Supply Current vs. Vcc (Internal RC Oscillator, 8 MHz)

85 °C

25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85 °C

25 °C

-40 °C

0

0.4

0.8

1.2

1.6

2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

404

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.3 ATmega328P Supply Current of IO Modules

The tables and formulas below can be used to calculate the additional current consumption for

the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules

are controlled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for

details.

It is possible to calculate the typical current consumption based on the numbers from Table 29-8

on page 404 for other VCC and frequency settings than listed in Table 29-7 on page 404.

Example Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI enabled

at VCC = 2.0V and F = 1MHz. From Table 29-8 on page 404, third column, we see that we need

to add 14.5% for the TIMER1, 22.1% for the ADC, and 15.7% for the SPI module. Reading from

Figure 29-145 on page 402, we find that the idle current consumption is ~0.055 mA at VCC =

2.0V and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI

enabled, gives:

Table 29-7. ATmega328P: Additional Current Consumption for the different I/O modules
(absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART0 3.20 µA 22.17 µA 100.25 µA

PRTWI 7.34 µA 46.55 µA 199.25 µA

PRTIM2 7.34 µA 50.79 µA 224.25 µA

PRTIM1 6.19 µA 41.25 µA 176.25 µA

PRTIM0 1.89 µA 14.28 µA 61.13 µA

PRSPI 6.94 µA 43.84 µA 186.50 µA

PRADC 8.66 µA 61.80 µA 295.38 µA

Table 29-8. ATmega328P: Additional Current Consumption (percentage) in Active and Idle
mode

PRR bit

Additional Current consumption

compared to Active with external

clock (see Figure 29-139 on page

399 and Figure 29-140 on page

399)

Additional Current consumption

compared to Idle with external

clock (see Figure 29-144 on page

401 and Figure 29-145 on page

402)

PRUSART0 1.4 % 7.8%

PRTWI 3.0 % 16.6 %

PRTIM2 3.3 % 17.8 %

PRTIM1 2.7 % 14.5 %

PRTIM0 0.9 % 4.8 %

PRSPI 2.9 % 15.7 %

PRADC 4.1 % 22.1 %

ICC total 0.045 mA (1 + 0.145 + 0.221 + 0.157)⋅ 0.069 mA≈ ≈

405

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.4 Power-down Supply Current

Figure 29-149.ATmega328P: Power-Down Supply Current vs. VCC (Watchdog Timer Disabled)

Figure 29-150.ATmega328P: Power-Down Supply Current vs. VCC (Watchdog Timer Enabled)

85 °C

25 °C

-40 °C0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

406

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.5 Power-save Supply Current

Figure 29-151.ATmega328P: Power-Save Supply Current vs. VCC (Watchdog Timer Disabled
and 32 kHz Crystal Oscillator Running)

29.4.6 Standby Supply Current

Figure 29-152.ATmega328P: Standby Supply Current vs. Vcc (Watchdog Timer Disabled)

25 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

 6MHz_xtal
 6MHz_res

 4MHz_xtal

 4MHz_res

 2MHz_xtal

 2MHz_res

 1MHz_res

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

407

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.7 Pin Pull-Up

Figure 29-153.ATmega328P: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8 V)

Figure 29-154.ATmega328P: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7 V)

85 °C

25 °C

-40 °C0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C
0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

u
A

)

408

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-155.ATmega328P: I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5 V)

Figure 29-156.ATmega328P: Reset Pull-up Resistor Current vs. Reset Pin Voltage
(VCC = 1.8 V)

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P
 (

u
A

)

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I R
E

S
E

T
 (

u
A

)

85 °C

25 °C

-40 °C

409

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-157.ATmega328P: Reset Pull-up Resistor Current vs. Reset Pin Voltage
(VCC = 2.7 V)

Figure 29-158.ATmega328P: Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5 V)

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
(u

A
)

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T (
u

A
)

85 °C

25 °C

-40 °C

410

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.8 Pin Driver Strength

Figure 29-159.ATmega328P: I/O Pin Output Voltage vs. Sink Current (VCC = 3 V)

Figure 29-160.ATmega328P: I/O Pin Output Voltage vs. Sink Current (VCC = 5 V)

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

IOL (mA)

V
O

L
 (

V
)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

IOL (mA)

V
O

L
(V

)

411

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-161.ATmega328P: I/O Pin Output Voltage vs. Source Current (Vcc = 3 V)

Figure 29-162.ATmega328P: I/O Pin Output Voltage vs. Source Current(VCC = 5 V)

85 °C

25 °C
-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25

IOH (mA)

V
O

H
 (

V
)

85 °C

25 °C

-40 °C

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

0 5 10 15 20 25

IOH (mA)

V
O

H
 (

V
)

412

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.9 Pin Threshold and Hysteresis

Figure 29-163.ATmega328P: I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

Figure 29-164.ATmega328P: I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

,

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

413

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-165.ATmega328P: I/O Pin Input Hysteresis vs. VCC

Figure 29-166.ATmega328P: Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin read as ‘1’)

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
y
s
te

re
s
is

 (
m

V
)

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

414

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-167.ATmega328P: Reset Input Threshold Voltage vs. VCC (VIL, I/O Pin read as ‘0’)

Figure 29-168.ATmega328P: Reset Pin Input Hysteresis vs. VCC

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p

u
t

H
y
s
te

re
s
is

 (
m

V
)

415

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.10 BOD Threshold

Figure 29-169.ATmega328P: BOD Thresholds vs. Temperature (BODLEVEL is 1.8 V)

Figure 29-170.ATmega328P: BOD Thresholds vs. Temperature (BODLEVEL is 2.7 V)

1

0

1.75

1.77

1.79

1.81

1.83

1.85

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

T
h
re

s
h
o
ld

 (
V

)

1

0

2.66

2.68

2.7

2.72

2.74

2.76

2.78

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

T
h

re
s
h

o
ld

 (
V

)

416

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-171.ATmega328P: BOD Thresholds vs. Temperature (BODLEVEL is 4.3 V)

29.4.11 Internal Oscilllator Speed

Figure 29-172.ATmega328P: Watchdog Oscillator Frequency vs. Temperature

1

0
4.25

4.3

4.35

4.4

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

T
h

re
s
h

o
ld

 (
V

)

5.5 V
4.0 V

3.3 V

2.7 V

109

110

111

112

113

114

115

116

117

118

119

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

k
H

z
)

417

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-173.ATmega328P: Watchdog Oscillator Frequency vs. VCC

Figure 29-174.ATmega328P: Calibrated 8 MHz RC Oscillator Frequency vs. VCC

85 °C

25 °C

-40 °C

1.5 2 2.5 3 3.5 4 4.5 5 5.5

 (V)

F
R

C
 (

k
H

z
)

108

110

112

114

116

118

120

VCC

85 °C

25 °C

-40 °C

7.4

7.6

7.8

8

8.2

8.4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z
)

418

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-175.ATmega328P: Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

Figure 29-176.ATmega328P: Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

5.0 V

3.0 V

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

F
R

C
 (

M
H

z
)

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z
)

419

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.4.12 Current Consumption of Peripheral Units

Figure 29-177.ATmega328P: ADC Current vs. VCC (AREF = AVCC)

Figure 29-178.ATmega328P: Analog Comparator Current vs. VCC

85 °C

25 °C

-40 °C

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C
25 °C

-40 °C

0

20

40

60

80

100

120

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

420

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-179.ATmega328P: AREF External Reference Current vs. VCC

Figure 29-180.ATmega328P: Brownout Detector Current vs. VCC

85 °C
25 °C

-40 °C

0

20

40

60

80

100

120

140

160

180

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

85 °C

25 °C
-40 °C

0

5

10

15

20

25

30

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

421

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-181.ATmega328P: Programming Current vs. VCC

29.4.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-182.ATmega328P: Reset Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

422

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Figure 29-183.ATmega328P: Reset Supply Current vs. Frequency (1 - 20 MHz)

Figure 29-184.ATmega328P: Minimum Reset Pulse width vs. VCC

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

85 °C
25 °C

-40 °C

0

200

400

600

800

1000

1200

1400

1600

1800

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u

ls
e

w
id

th
 (

n
s
)

423

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

30. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O Data Register 195

(0xC5) UBRR0H USART Baud Rate Register High 199

(0xC4) UBRR0L USART Baud Rate Register Low 199

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 /UDORD0 UCSZ00 / UCPHA0 UCPOL0 197/212

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 196

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 195

424

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 244

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 241

(0xBB) TWDR 2-wire Serial Interface Data Register 243

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 244

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 243

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register 241

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 164

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B 162

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 162

(0xB2) TCNT2 Timer/Counter2 (8-bit) 162

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 161

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 158

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 138

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 138

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 138

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 138

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 138

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 138

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 138

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 138

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 137

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 136

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 134

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 249

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 266

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

425

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 262

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 265

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 263

(0x79) ADCH ADC Data Register High byte 265

(0x78) ADCL ADC Data Register Low byte 265

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 163

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 139

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 111

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 74

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 74

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 74

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 71

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 37

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 42

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 37

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 54

0x3F (0x5F) SREG I T H S V N Z C 9

0x3E (0x5E) SPH – – – – – (SP10) 5. SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)5. – (RWWSRE)5. BLBSET PGWRT PGERS SELFPRGEN 292

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – BODS BODSE PUD – – IVSEL IVCE 44/68/92

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 54

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 40

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 247

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 175

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 174

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 173

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 25

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 25

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0 Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 143/165

0x22 (0x42) EEARH (EEPROM Address Register High Byte) 5. 21

0x21 (0x41) EEARL EEPROM Address Register Low Byte 21

0x20 (0x40) EEDR EEPROM Data Register 21

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 21

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 25

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 72

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 72

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

426

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for ATmega88PA/168PA.

0x1B (0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – OCF2B OCF2A TOV2 163

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 139

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 93

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 93

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 93

0x08 (0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 92

0x07 (0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 92

0x06 (0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 92

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 92

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 92

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 92

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x0 (0x20) Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

427

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

31. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP(1) k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL(1) k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

428

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

Mnemonics Operands Description Operation Flags #Clocks

429

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Note: 1. These instructions are only available in ATmega168PA and ATmega328P.

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

430

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

32. Ordering Information

32.1 ATmega48PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 316.
4. NiPdAu Lead Finish.

Speed (MHz) Power Supply Ordering Code(2) Package(1) Operational Range

20(3) 1.8 - 5.5

ATmega48PA-AU

ATmega48PA-MMH(4)

ATmega48PA-MU

ATmega48PA-PU

32A

28M1

32M1-A

28P3

Industrial

(-40°C to 85°C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

431

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

32.2 ATmega88PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 316.
4. NiPdAu Lead Finish.

Speed (MHz) Power Supply Ordering Code(2) Package(1) Operational Range

20(3) 1.8 - 5.5

ATmega88PA-AU

ATmega88PA-MMH(4)

ATmega88PA-MU

ATmega88PA-PU

32A

28M1

32M1-A

28P3

Industrial

(-40°C to 85°C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

432

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

32.3 ATmega168PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 316.
4. NiPdAu Lead Finish.

Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5

ATmega168PA-AU

ATmega168PA-MMH(4)

ATmega168PA-MU

ATmega168PA-PU

32A

28M1

32M1-A

28P3

Industrial

(-40°C to 85°C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

433

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

32.4 ATmega328P

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See Figure 28-1 on page 316.

Speed (MHz) Power Supply Ordering Code(2) Package(1) Operational Range

20(3) 1.8 - 5.5

ATmega328P- AU

ATmega328P- MU

ATmega328P- PU

32A

32M1-A

28P3

Industrial

(-40°C to 85°C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

434

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

33. Packaging Information

33.1 32A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

B32A

10/5/2001

PIN 1 IDENTIFIER

0˚~7˚

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

Notes: 1. This package conforms to JEDEC reference MS-026, Variation ABA.

2. Dimensions D1 and E1 do not include mold protrusion. Allowable

protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum

plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10 mm maximum.

A – – 1.20

A1 0.05 – 0.15

A2 0.95 1.00 1.05

D 8.75 9.00 9.25

D1 6.90 7.00 7.10 Note 2

E 8.75 9.00 9.25

E1 6.90 7.00 7.10 Note 2

B 0.30 – 0.45

C 0.09 – 0.20

L 0.45 – 0.75

e 0.80 TYP

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

435

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

33.2 28M1

 2325 Orchard Parkway

S J CA 9 131

TITLE DRAWING NO. REV.

20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm,
A20M1

10/27/04

2 6 E d P d Mi L d F P k (MLF)

A 0.70 0.75 0.80

A1 – 0.01 0.05

A2 0.20 REF

b 0.18 0.23 0.30

D 4.00 BSC

D2 2.45 2.60 2.75

E 4.00 BSC

E2 2.45 2.60 2.75

e 0.50 BSC

L 0.35 0.40 0.55

SIDE VIEW

Pin 1 ID

Pin #1

Notch

(0.20 R)

BOTTOM VIEW

TOP VIEW

Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D

E

e

A2

A1

 A

D2

E2

0.08 C

L

1

2

3

b

1

2

3

436

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

33.3 32M1-A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, E32M1-A

5/25/06

 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D1

D

E1 E

eb

A3
A2

A1

 A

D2

E2

0.08 C

L

1

2

3

P

P

0
1

2

3

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A2 – 0.65 1.00

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D1

 D2 2.95 3.10 3.25

4.90 5.00 5.10

4.70 4.75 4.80

4.70 4.75 4.80

4.90 5.00 5.10

E

 E1

 E2 2.95 3.10 3.25

 e 0.50 BSC

 L 0.30 0.40 0.50

 P – – 0.60

 – – 12
o

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

0

Pin 1 ID

Pin #1 Notch
(0.20 R)

K 0.20 – –

K

K

437

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

33.4 28P3

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual
Inline Package (PDIP)

B28P3

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

B2
(4 PLACES)

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 4.5724

A1 0.508 – –

D 34.544 – 34.798 Note 1

E 7.620 – 8.255

E1 7.112 – 7.493 Note 1

B 0.381 – 0.533

B1 1.143 – 1.397

B2 0.762 – 1.143

L 3.175 – 3.429

C 0.203 – 0.356

eB – – 10.160

 e 2.540 TYP

 Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

438

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

34. Errata

34.1 Errata ATmega48PA

The revision letter in this section refers to the revision of the ATmega48PA device.

34.1.1 Rev. D

No known errata.

34.2 Errata ATmega88PA

The revision letter in this section refers to the revision of the ATmega88PA device.

34.2.1 Rev. F

No known errata.

34.3 Errata ATmega168PA

The revision letter in this section refers to the revision of the ATmega168PA device.

34.3.1 Rev E

No known errata.

34.4 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

34.4.1 Rev D

No known errata.

34.4.2 Rev C

Not sampled.

34.4.3 Rev B
• Unstable 32 kHz Oscillator

1. Unstable 32 kHz Oscillator

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None

34.4.4 Rev A
• Unstable 32 kHz Oscillator

1. Unstable 32 kHz Oscillator

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None

439

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

35. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The

referring revision in this section are referring to the document revision.

35.1 Rev. 8161D – 10/09

35.2 Rev. 8161C – 05/09

35.3 Rev. 8161B – 01/09

1. Inserted Table on page 32, Capacitance for Low-frequency Oscillator.

1. Updated ”Features” on page 1 for ATmega48PA/88PA/168PA/328P.

2. Updated ”Overview” on page 5 included the Table 2-1 on page 6.

3. Updated ”AVR Memories” on page 16 included ”Register Description” on page 21 and inserted
Figure 7-1 on page 17.

4. Updated ”Register Description” on page 44.

5. Updated ”System Control and Reset” on page 46.

6. Updated ”Interrupts” on page 57.

7. Updated ”External Interrupts” on page 70.

8. Updated ”Boot Loader Support – Read-While-Write Self-Programming, ATmega88PA,
ATmega168PA and ATmega328P” on page 277.

9. Inserted ”ATmega168PA DC Characteristics” on page 315.

10. Inserted ”ATmega328P DC Characteristics” on page 316.

11. Inserted ”ATmega168PA Typical Characteristics” on page 375.

12. Inserted ”ATmega328P Typical Characteristics” on page 399.

13. Inserted Ordering Information for ”ATmega168PA” on page 432.

14. Inserted Ordering Information for ”ATmega328P” on page 433.

15. Inserted ”Errata ATmega328P” on page 438.

16. Editing updates.

1. Updated ”Features” on page 1 for ATmega48PA and updated the book accordingly.

2. Updated ”Overview” on page 5 included the Table 2-1 on page 6.

3. Updated ”AVR Memories” on page 16 included ”Register Description” on page 21 and inserted
Figure 7-1 on page 17.

4. Updated ”Register Description” on page 44.

5. Updated ”System Control and Reset” on page 46.

440

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

35.4 Rev. 8161A – 11/08

6. Updated ”Interrupts” on page 57.

7. Updated ”External Interrupts” on page 70.

8. Inserted Typical characteristics for ”ATmega48PA Typical Characteristics” on page 327.

9. Updated figure names in Typical characteristics for ”ATmega88PA Typical Character-

istics” on page 351.

10. Inserted ”ATmega48PA DC Characteristics” on page 314.

11. Updated Table 28-1 on page 317 by removing the footnote from Vcc/User calibration

12. Updated Table 28-7 on page 323 by removing Max value (2.5 LSB) from Absolute

accuracy, VREF = 4V, VCC = 4V, ADC clock = 200 kHz.

13. Inserted Ordering Information for ”ATmega48PA” on page 430.

1. Initial revision (Based on the ATmega48P/88P/168P/328P datasheet 8025F-AVR-08/08).

2. Changes done compared to ATmega48P/88P/168P/328P datasheet 8025F-AVR-08/08:

– Updated ”DC Characteristics” on page 313 with new typical values for ICC.

– Updated ”Speed Grades” on page 316.

– New graphics in ”Typical Characteristics” on page 326.

– New ”Ordering Information” on page 430.

i

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

Table of Contents

Features ... 1

1 Pin Configurations ... 2

1.1Pin Descriptions ..3

2 Overview ... 5

2.1Block Diagram ...5

2.2Comparison Between ATmega48PA, ATmega88PA, ATmega168PA and
ATmega328P 6

3 Resources ... 7

4 Data Retention .. 7

5 About Code Examples ... 7

6 AVR CPU Core .. 8

6.1Overview ...8

6.2ALU – Arithmetic Logic Unit ..9

6.3Status Register ..9

6.4General Purpose Register File ..11

6.5Stack Pointer ...12

6.6Instruction Execution Timing ...13

6.7Reset and Interrupt Handling ..14

7 AVR Memories .. 16

7.1Overview ...16

7.2In-System Reprogrammable Flash Program Memory ...16

7.3SRAM Data Memory ...18

7.4EEPROM Data Memory ..19

7.5I/O Memory ..20

7.6Register Description ..21

8 System Clock and Clock Options ... 26

8.1Clock Systems and their Distribution ...26

8.2Clock Sources ...27

8.3Low Power Crystal Oscillator ...28

8.4Full Swing Crystal Oscillator ..30

8.5Low Frequency Crystal Oscillator ..32

8.6Calibrated Internal RC Oscillator ...33

ii

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

8.7128 kHz Internal Oscillator ..34

8.8External Clock ...34

8.9Clock Output Buffer ...35

8.10Timer/Counter Oscillator ...35

8.11System Clock Prescaler ..35

8.12Register Description ..37

9 Power Management and Sleep Modes ... 39

9.1Sleep Modes ...39

9.2BOD Disable ..40

9.3Idle Mode ...40

9.4ADC Noise Reduction Mode ...40

9.5Power-down Mode ..41

9.6Power-save Mode ...41

9.7Standby Mode ...41

9.8Extended Standby Mode ...41

9.9Power Reduction Register ...42

9.10Minimizing Power Consumption ..42

9.11Register Description ..44

10 System Control and Reset .. 46

10.1Resetting the AVR ...46

10.2Reset Sources ...46

10.3Power-on Reset ...47

10.4External Reset ...48

10.5Brown-out Detection ..48

10.6Watchdog System Reset ...49

10.7Internal Voltage Reference ..49

10.8Watchdog Timer ..50

10.9Register Description ..54

11 Interrupts .. 57

11.1Interrupt Vectors in ATmega48PA ...57

11.2Interrupt Vectors in ATmega88PA ...59

11.3Interrupt Vectors in ATmega168PA ...62

11.4Interrupt Vectors in ATmega328P ...65

11.5Register Description ..68

12 External Interrupts ... 70

iii

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

12.1Pin Change Interrupt Timing ...70

12.2Register Description ..71

13 I/O-Ports .. 75

13.1Overview ...75

13.2Ports as General Digital I/O ...76

13.3Alternate Port Functions ..80

13.4Register Description ..92

14 8-bit Timer/Counter0 with PWM .. 94

14.1Features ..94

14.2Overview ...94

14.3Timer/Counter Clock Sources ...96

14.4Counter Unit ..96

14.5Output Compare Unit ..97

14.6Compare Match Output Unit ..98

14.7Modes of Operation ...99

14.8Timer/Counter Timing Diagrams ...104

14.9Register Description ..106

15 16-bit Timer/Counter1 with PWM .. 113

15.1Features ..113

15.2Overview ...113

15.3Accessing 16-bit Registers ..115

15.4Timer/Counter Clock Sources ...118

15.5Counter Unit ..119

15.6Input Capture Unit ...120

15.7Output Compare Units ...122

15.8Compare Match Output Unit ..124

15.9Modes of Operation ...125

15.10Timer/Counter Timing Diagrams ...132

15.11Register Description ..134

16 Timer/Counter0 and Timer/Counter1 Prescalers 141

16.1Internal Clock Source ..141

16.2Prescaler Reset ...141

16.3External Clock Source ...141

16.4Register Description ..143

iv

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

17 8-bit Timer/Counter2 with PWM and Asynchronous Operation 144

17.1Features ..144

17.2Overview ...144

17.3Timer/Counter Clock Sources ...145

17.4Counter Unit ..145

17.5Output Compare Unit ..146

17.6Compare Match Output Unit ..148

17.7Modes of Operation ...149

17.8Timer/Counter Timing Diagrams ...153

17.9Asynchronous Operation of Timer/Counter2 ...155

17.10Timer/Counter Prescaler ...156

17.11Register Description ..158

18 SPI – Serial Peripheral Interface ... 166

18.1Features ..166

18.2Overview ...166

18.3SS Pin Functionality ..171

18.4Data Modes ...171

18.5Register Description ..173

19 USART0 ... 176

19.1Features ..176

19.2Overview ...176

19.3Clock Generation ...177

19.4Frame Formats ..180

19.5USART Initialization ..182

19.6Data Transmission – The USART Transmitter ..183

19.7Data Reception – The USART Receiver ...186

19.8Asynchronous Data Reception ..190

19.9Multi-processor Communication Mode ..193

19.10Register Description ..195

19.11Examples of Baud Rate Setting ..199

20 USART in SPI Mode ... 204

20.1Features ..204

20.2Overview ...204

20.3Clock Generation ...204

20.4SPI Data Modes and Timing ...205

v

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

20.5Frame Formats ..206

20.6Data Transfer ..208

20.7AVR USART MSPIM vs. AVR SPI ..210

20.8Register Description ..211

21 2-wire Serial Interface .. 214

21.1Features ..214

21.22-wire Serial Interface Bus Definition ..214

21.3Data Transfer and Frame Format ..216

21.4Multi-master Bus Systems, Arbitration and Synchronization218

21.5Overview of the TWI Module ...221

21.6Using the TWI ..223

21.7Transmission Modes ...227

21.8Multi-master Systems and Arbitration ..240

21.9Register Description ..241

22 Analog Comparator ... 246

22.1Overview ...246

22.2Analog Comparator Multiplexed Input ...246

22.3Register Description ..247

23 Analog-to-Digital Converter .. 250

23.1Features ..250

23.2Overview ...250

23.3Starting a Conversion ..252

23.4Prescaling and Conversion Timing ..253

23.5Changing Channel or Reference Selection ...255

23.6ADC Noise Canceler ...256

23.7ADC Conversion Result ..261

23.8Temperature Measurement ...261

23.9Register Description ..262

24 debugWIRE On-chip Debug System .. 267

24.1Features ..267

24.2Overview ...267

24.3Physical Interface ..267

24.4Software Break Points ...268

24.5Limitations of debugWIRE ...268

24.6Register Description ..268

vi

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

25 Self-Programming the Flash, ATmega48PA 269

25.1Overview ...269

25.2Addressing the Flash During Self-Programming ...270

25.3Register Description ..275

26 Boot Loader Support – Read-While-Write Self-Programming,
ATmega88PA, ATmega168PA and ATmega328P 277

26.1Features ..277

26.2Overview ...277

26.3Application and Boot Loader Flash Sections ...277

26.4Read-While-Write and No Read-While-Write Flash Sections278

26.5Boot Loader Lock Bits ...280

26.6Entering the Boot Loader Program ..281

26.7Addressing the Flash During Self-Programming ...282

26.8Self-Programming the Flash ..282

26.9Register Description ..292

27 Memory Programming ... 294

27.1Program And Data Memory Lock Bits ...294

27.2Fuse Bits ...295

27.3Signature Bytes ...298

27.4Calibration Byte ...298

27.5Page Size ..299

27.6Parallel Programming Parameters, Pin Mapping, and Commands299

27.7Parallel Programming ..301

27.8Serial Downloading ...308

28 Electrical Characteristics .. 313

28.1Absolute Maximum Ratings* ...313

28.2DC Characteristics ..313

28.3Speed Grades ...316

28.4Clock Characteristics ...317

28.5System and Reset Characteristics ..318

28.6SPI Timing Characteristics ..319

28.72-wire Serial Interface Characteristics ...321

28.8ADC Characteristics ..323

28.9Parallel Programming Characteristics ...324

29 Typical Characteristics .. 326

vii

8161D–AVR–10/09

ATmega48PA/88PA/168PA/328P

29.1ATmega48PA Typical Characteristics ...327

29.2ATmega88PA Typical Characteristics ...351

29.3ATmega168PA Typical Characteristics ...375

29.4ATmega328P Typical Characteristics ...399

30 Register Summary ... 423

31 Instruction Set Summary .. 427

32 Ordering Information ... 430

32.1ATmega48PA ..430

32.2ATmega88PA ..431

32.3ATmega168PA ..432

32.4ATmega328P ..433

33 Packaging Information .. 434

33.132A ..434

33.228M1 ...435

33.332M1-A ..436

33.428P3 ..437

34 Errata ... 438

34.1Errata ATmega48PA ...438

34.2Errata ATmega88PA ...438

34.3Errata ATmega168PA ...438

34.4Errata ATmega328P ..438

35 Datasheet Revision History .. 439

35.1Rev. 8161D – 10/09 ..439

35.2Rev. 8161C – 05/09 ..439

35.3Rev. 8161B – 01/09 ...439

35.4Rev. 8161A – 11/08 ...440

Table of Contents... i

8161D–AVR–10/09

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5

418 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

Tel: (852) 2245-6100

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others are registered trade-

marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1. Pin Configurations
	1.1 Pin Descriptions
	1.1.1 VCC
	1.1.2 GND
	1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
	1.1.4 Port C (PC5:0)
	1.1.5 PC6/RESET
	1.1.6 Port D (PD7:0)
	1.1.7 AVCC
	1.1.8 AREF
	1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

	2. Overview
	2.1 Block Diagram
	2.2 Comparison Between ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P

	3. Resources
	4. Data Retention
	5. About Code Examples
	6. AVR CPU Core
	6.1 Overview
	6.2 ALU – Arithmetic Logic Unit
	6.3 Status Register
	6.3.1 SREG – AVR Status Register

	6.4 General Purpose Register File
	6.4.1 The X-register, Y-register, and Z-register

	6.5 Stack Pointer
	6.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

	6.6 Instruction Execution Timing
	6.7 Reset and Interrupt Handling
	6.7.1 Interrupt Response Time

	7. AVR Memories
	7.1 Overview
	7.2 In-System Reprogrammable Flash Program Memory
	7.3 SRAM Data Memory
	7.3.1 Data Memory Access Times

	7.4 EEPROM Data Memory
	7.4.1 EEPROM Read/Write Access
	7.4.2 Preventing EEPROM Corruption

	7.5 I/O Memory
	7.5.1 General Purpose I/O Registers

	7.6 Register Description
	7.6.1 EEARH and EEARL – The EEPROM Address Register
	7.6.2 EEDR – The EEPROM Data Register
	7.6.3 EECR – The EEPROM Control Register
	7.6.4 GPIOR2 – General Purpose I/O Register 2
	7.6.5 GPIOR1 – General Purpose I/O Register 1
	7.6.6 GPIOR0 – General Purpose I/O Register 0

	8. System Clock and Clock Options
	8.1 Clock Systems and their Distribution
	8.1.1 CPU Clock – clkCPU
	8.1.2 I/O Clock – clkI/O
	8.1.3 Flash Clock – clkFLASH
	8.1.4 Asynchronous Timer Clock – clkASY
	8.1.5 ADC Clock – clkADC

	8.2 Clock Sources
	8.2.1 Default Clock Source
	8.2.2 Clock Startup Sequence

	8.3 Low Power Crystal Oscillator
	8.4 Full Swing Crystal Oscillator
	8.5 Low Frequency Crystal Oscillator
	8.6 Calibrated Internal RC Oscillator
	8.7 128 kHz Internal Oscillator
	8.8 External Clock
	8.9 Clock Output Buffer
	8.10 Timer/Counter Oscillator
	8.11 System Clock Prescaler
	8.12 Register Description
	8.12.1 OSCCAL – Oscillator Calibration Register
	8.12.2 CLKPR – Clock Prescale Register

	9. Power Management and Sleep Modes
	9.1 Sleep Modes
	9.2 BOD Disable
	9.3 Idle Mode
	9.4 ADC Noise Reduction Mode
	9.5 Power-down Mode
	9.6 Power-save Mode
	9.7 Standby Mode
	9.8 Extended Standby Mode
	9.9 Power Reduction Register
	9.10 Minimizing Power Consumption
	9.10.1 Analog to Digital Converter
	9.10.2 Analog Comparator
	9.10.3 Brown-out Detector
	9.10.4 Internal Voltage Reference
	9.10.5 Watchdog Timer
	9.10.6 Port Pins
	9.10.7 On-chip Debug System

	9.11 Register Description
	9.11.1 SMCR – Sleep Mode Control Register
	9.11.2 MCUCR – MCU Control Register
	9.11.3 PRR – Power Reduction Register

	10. System Control and Reset
	10.1 Resetting the AVR
	10.2 Reset Sources
	10.3 Power-on Reset
	10.4 External Reset
	10.5 Brown-out Detection
	10.6 Watchdog System Reset
	10.7 Internal Voltage Reference
	10.7.1 Voltage Reference Enable Signals and Start-up Time

	10.8 Watchdog Timer
	10.8.1 Features
	10.8.2 Overview

	10.9 Register Description
	10.9.1 MCUSR – MCU Status Register
	10.9.2 WDTCSR – Watchdog Timer Control Register

	11. Interrupts
	11.1 Interrupt Vectors in ATmega48PA
	11.2 Interrupt Vectors in ATmega88PA
	11.3 Interrupt Vectors in ATmega168PA
	11.4 Interrupt Vectors in ATmega328P
	11.5 Register Description
	11.5.1 Moving Interrupts Between Application and Boot Space, ATmega88PA, ATmega168PA and ATmega328P
	11.5.2 MCUCR – MCU Control Register

	12. External Interrupts
	12.1 Pin Change Interrupt Timing
	12.2 Register Description
	12.2.1 EICRA – External Interrupt Control Register A
	12.2.2 EIMSK – External Interrupt Mask Register
	12.2.3 EIFR – External Interrupt Flag Register
	12.2.4 PCICR – Pin Change Interrupt Control Register
	12.2.5 PCIFR – Pin Change Interrupt Flag Register
	12.2.6 PCMSK2 – Pin Change Mask Register 2
	12.2.7 PCMSK1 – Pin Change Mask Register 1
	12.2.8 PCMSK0 – Pin Change Mask Register 0

	13. I/O-Ports
	13.1 Overview
	13.2 Ports as General Digital I/O
	13.2.1 Configuring the Pin
	13.2.2 Toggling the Pin
	13.2.3 Switching Between Input and Output
	13.2.4 Reading the Pin Value
	13.2.5 Digital Input Enable and Sleep Modes
	13.2.6 Unconnected Pins

	13.3 Alternate Port Functions
	13.3.1 Alternate Functions of Port B
	13.3.2 Alternate Functions of Port C
	13.3.3 Alternate Functions of Port D

	13.4 Register Description
	13.4.1 MCUCR – MCU Control Register
	13.4.2 PORTB – The Port B Data Register
	13.4.3 DDRB – The Port B Data Direction Register
	13.4.4 PINB – The Port B Input Pins Address
	13.4.5 PORTC – The Port C Data Register
	13.4.6 DDRC – The Port C Data Direction Register
	13.4.7 PINC – The Port C Input Pins Address
	13.4.8 PORTD – The Port D Data Register
	13.4.9 DDRD – The Port D Data Direction Register
	13.4.10 PIND – The Port D Input Pins Address

	14. 8-bit Timer/Counter0 with PWM
	14.1 Features
	14.2 Overview
	14.2.1 Definitions
	14.2.2 Registers

	14.3 Timer/Counter Clock Sources
	14.4 Counter Unit
	14.5 Output Compare Unit
	14.5.1 Force Output Compare
	14.5.2 Compare Match Blocking by TCNT0 Write
	14.5.3 Using the Output Compare Unit

	14.6 Compare Match Output Unit
	14.6.1 Compare Output Mode and Waveform Generation

	14.7 Modes of Operation
	14.7.1 Normal Mode
	14.7.2 Clear Timer on Compare Match (CTC) Mode
	14.7.3 Fast PWM Mode
	14.7.4 Phase Correct PWM Mode

	14.8 Timer/Counter Timing Diagrams
	14.9 Register Description
	14.9.1 TCCR0A – Timer/Counter Control Register A
	14.9.2 TCCR0B – Timer/Counter Control Register B
	14.9.3 TCNT0 – Timer/Counter Register
	14.9.4 OCR0A – Output Compare Register A
	14.9.5 OCR0B – Output Compare Register B
	14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register
	14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	15. 16-bit Timer/Counter1 with PWM
	15.1 Features
	15.2 Overview
	15.2.1 Registers
	15.2.2 Definitions

	15.3 Accessing 16-bit Registers
	15.3.1 Reusing the Temporary High Byte Register

	15.4 Timer/Counter Clock Sources
	15.5 Counter Unit
	15.6 Input Capture Unit
	15.6.1 Input Capture Trigger Source
	15.6.2 Noise Canceler
	15.6.3 Using the Input Capture Unit

	15.7 Output Compare Units
	15.7.1 Force Output Compare
	15.7.2 Compare Match Blocking by TCNT1 Write
	15.7.3 Using the Output Compare Unit

	15.8 Compare Match Output Unit
	15.8.1 Compare Output Mode and Waveform Generation

	15.9 Modes of Operation
	15.9.1 Normal Mode
	15.9.2 Clear Timer on Compare Match (CTC) Mode
	15.9.3 Fast PWM Mode
	15.9.4 Phase Correct PWM Mode
	15.9.5 Phase and Frequency Correct PWM Mode

	15.10 Timer/Counter Timing Diagrams
	15.11 Register Description
	15.11.1 TCCR1A – Timer/Counter1 Control Register A
	15.11.2 TCCR1B – Timer/Counter1 Control Register B
	15.11.3 TCCR1C – Timer/Counter1 Control Register C
	15.11.4 TCNT1H and TCNT1L – Timer/Counter1
	15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	15.11.7 ICR1H and ICR1L – Input Capture Register 1
	15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

	16. Timer/Counter0 and Timer/Counter1 Prescalers
	16.1 Internal Clock Source
	16.2 Prescaler Reset
	16.3 External Clock Source
	16.4 Register Description
	16.4.1 GTCCR – General Timer/Counter Control Register

	17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	17.1 Features
	17.2 Overview
	17.2.1 Registers
	17.2.2 Definitions

	17.3 Timer/Counter Clock Sources
	17.4 Counter Unit
	17.5 Output Compare Unit
	17.5.1 Force Output Compare
	17.5.2 Compare Match Blocking by TCNT2 Write
	17.5.3 Using the Output Compare Unit

	17.6 Compare Match Output Unit
	17.6.1 Compare Output Mode and Waveform Generation

	17.7 Modes of Operation
	17.7.1 Normal Mode
	17.7.2 Clear Timer on Compare Match (CTC) Mode
	17.7.3 Fast PWM Mode
	17.7.4 Phase Correct PWM Mode

	17.8 Timer/Counter Timing Diagrams
	17.9 Asynchronous Operation of Timer/Counter2
	17.10 Timer/Counter Prescaler
	17.11 Register Description
	17.11.1 TCCR2A – Timer/Counter Control Register A
	17.11.2 TCCR2B – Timer/Counter Control Register B
	17.11.3 TCNT2 – Timer/Counter Register
	17.11.4 OCR2A – Output Compare Register A
	17.11.5 OCR2B – Output Compare Register B
	17.11.6 TIMSK2 – Timer/Counter2 Interrupt Mask Register
	17.11.7 TIFR2 – Timer/Counter2 Interrupt Flag Register
	17.11.8 ASSR – Asynchronous Status Register
	17.11.9 GTCCR – General Timer/Counter Control Register

	18. SPI – Serial Peripheral Interface
	18.1 Features
	18.2 Overview
	18.3 SS Pin Functionality
	18.3.1 Slave Mode
	18.3.2 Master Mode

	18.4 Data Modes
	18.5 Register Description
	18.5.1 SPCR – SPI Control Register
	18.5.2 SPSR – SPI Status Register
	18.5.3 SPDR – SPI Data Register

	19. USART0
	19.1 Features
	19.2 Overview
	19.3 Clock Generation
	19.3.1 Internal Clock Generation – The Baud Rate Generator
	19.3.2 Double Speed Operation (U2Xn)
	19.3.3 External Clock
	19.3.4 Synchronous Clock Operation

	19.4 Frame Formats
	19.4.1 Parity Bit Calculation

	19.5 USART Initialization
	19.6 Data Transmission – The USART Transmitter
	19.6.1 Sending Frames with 5 to 8 Data Bit
	19.6.2 Sending Frames with 9 Data Bit
	19.6.3 Transmitter Flags and Interrupts
	19.6.4 Parity Generator
	19.6.5 Disabling the Transmitter

	19.7 Data Reception – The USART Receiver
	19.7.1 Receiving Frames with 5 to 8 Data Bits
	19.7.2 Receiving Frames with 9 Data Bits
	19.7.3 Receive Compete Flag and Interrupt
	19.7.4 Receiver Error Flags
	19.7.5 Parity Checker
	19.7.6 Disabling the Receiver
	19.7.7 Flushing the Receive Buffer

	19.8 Asynchronous Data Reception
	19.8.1 Asynchronous Clock Recovery
	19.8.2 Asynchronous Data Recovery
	19.8.3 Asynchronous Operational Range

	19.9 Multi-processor Communication Mode
	19.9.1 Using MPCMn

	19.10 Register Description
	19.10.1 UDRn – USART I/O Data Register n
	19.10.2 UCSRnA – USART Control and Status Register n A
	19.10.3 UCSRnB – USART Control and Status Register n B
	19.10.4 UCSRnC – USART Control and Status Register n C
	19.10.5 UBRRnL and UBRRnH – USART Baud Rate Registers

	19.11 Examples of Baud Rate Setting

	20. USART in SPI Mode
	20.1 Features
	20.2 Overview
	20.3 Clock Generation
	20.4 SPI Data Modes and Timing
	20.5 Frame Formats
	20.5.1 USART MSPIM Initialization

	20.6 Data Transfer
	20.6.1 Transmitter and Receiver Flags and Interrupts
	20.6.2 Disabling the Transmitter or Receiver

	20.7 AVR USART MSPIM vs. AVR SPI
	20.8 Register Description
	20.8.1 UDRn – USART MSPIM I/O Data Register
	20.8.2 UCSRnA – USART MSPIM Control and Status Register n A
	20.8.3 UCSRnB – USART MSPIM Control and Status Register n B
	20.8.4 UCSRnC – USART MSPIM Control and Status Register n C
	20.8.5 USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH

	21. 2-wire Serial Interface
	21.1 Features
	21.2 2-wire Serial Interface Bus Definition
	21.2.1 TWI Terminology
	21.2.2 Electrical Interconnection

	21.3 Data Transfer and Frame Format
	21.3.1 Transferring Bits
	21.3.2 START and STOP Conditions
	21.3.3 Address Packet Format
	21.3.4 Data Packet Format
	21.3.5 Combining Address and Data Packets into a Transmission

	21.4 Multi-master Bus Systems, Arbitration and Synchronization
	21.5 Overview of the TWI Module
	21.5.1 SCL and SDA Pins
	21.5.2 Bit Rate Generator Unit
	21.5.3 Bus Interface Unit
	21.5.4 Address Match Unit
	21.5.5 Control Unit

	21.6 Using the TWI
	21.7 Transmission Modes
	21.7.1 Master Transmitter Mode
	21.7.2 Master Receiver Mode
	21.7.3 Slave Receiver Mode
	21.7.4 Slave Transmitter Mode
	21.7.5 Miscellaneous States
	21.7.6 Combining Several TWI Modes

	21.8 Multi-master Systems and Arbitration
	21.9 Register Description
	21.9.1 TWBR – TWI Bit Rate Register
	21.9.2 TWCR – TWI Control Register
	21.9.3 TWSR – TWI Status Register
	21.9.4 TWDR – TWI Data Register
	21.9.5 TWAR – TWI (Slave) Address Register
	21.9.6 TWAMR – TWI (Slave) Address Mask Register

	22. Analog Comparator
	22.1 Overview
	22.2 Analog Comparator Multiplexed Input
	22.3 Register Description
	22.3.1 ADCSRB – ADC Control and Status Register B
	22.3.2 ACSR – Analog Comparator Control and Status Register
	22.3.3 DIDR1 – Digital Input Disable Register 1

	23. Analog-to-Digital Converter
	23.1 Features
	23.2 Overview
	23.3 Starting a Conversion
	23.4 Prescaling and Conversion Timing
	23.5 Changing Channel or Reference Selection
	23.5.1 ADC Input Channels
	23.5.2 ADC Voltage Reference

	23.6 ADC Noise Canceler
	23.6.1 Analog Input Circuitry
	23.6.2 Analog Noise Canceling Techniques
	23.6.3 ADC Accuracy Definitions

	23.7 ADC Conversion Result
	23.8 Temperature Measurement
	23.9 Register Description
	23.9.1 ADMUX – ADC Multiplexer Selection Register
	23.9.2 ADCSRA – ADC Control and Status Register A
	23.9.3 ADCL and ADCH – The ADC Data Register
	23.9.3.1 ADLAR = 0
	23.9.3.2 ADLAR = 1

	23.9.4 ADCSRB – ADC Control and Status Register B
	23.9.5 DIDR0 – Digital Input Disable Register 0

	24. debugWIRE On-chip Debug System
	24.1 Features
	24.2 Overview
	24.3 Physical Interface
	24.4 Software Break Points
	24.5 Limitations of debugWIRE
	24.6 Register Description
	24.6.1 DWDR – debugWire Data Register

	25. Self-Programming the Flash, ATmega48PA
	25.1 Overview
	25.1.1 Performing Page Erase by SPM
	25.1.2 Filling the Temporary Buffer (Page Loading)
	25.1.3 Performing a Page Write

	25.2 Addressing the Flash During Self-Programming
	25.2.1 EEPROM Write Prevents Writing to SPMCSR
	25.2.2 Reading the Fuse and Lock Bits from Software
	25.2.3 Preventing Flash Corruption
	25.2.4 Programming Time for Flash when Using SPM
	25.2.5 Simple Assembly Code Example for a Boot Loader

	25.3 Register Description
	25.3.1 SPMCSR – Store Program Memory Control and Status Register

	26. Boot Loader Support – Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P
	26.1 Features
	26.2 Overview
	26.3 Application and Boot Loader Flash Sections
	26.3.1 Application Section
	26.3.2 BLS – Boot Loader Section

	26.4 Read-While-Write and No Read-While-Write Flash Sections
	26.4.1 RWW – Read-While-Write Section
	26.4.2 NRWW – No Read-While-Write Section

	26.5 Boot Loader Lock Bits
	26.6 Entering the Boot Loader Program
	26.7 Addressing the Flash During Self-Programming
	26.8 Self-Programming the Flash
	26.8.1 Performing Page Erase by SPM
	26.8.2 Filling the Temporary Buffer (Page Loading)
	26.8.3 Performing a Page Write
	26.8.4 Using the SPM Interrupt
	26.8.5 Consideration While Updating BLS
	26.8.6 Prevent Reading the RWW Section During Self-Programming
	26.8.7 Setting the Boot Loader Lock Bits by SPM
	26.8.8 EEPROM Write Prevents Writing to SPMCSR
	26.8.9 Reading the Fuse and Lock Bits from Software
	26.8.10 Reading the Signature Row from Software
	26.8.11 Preventing Flash Corruption
	26.8.12 Programming Time for Flash when Using SPM
	26.8.13 Simple Assembly Code Example for a Boot Loader
	26.8.14 ATmega88PA Boot Loader Parameters
	26.8.15 ATmega168PA Boot Loader Parameters
	26.8.16 ATmega328P Boot Loader Parameters

	26.9 Register Description
	26.9.1 SPMCSR – Store Program Memory Control and Status Register

	27. Memory Programming
	27.1 Program And Data Memory Lock Bits
	27.2 Fuse Bits
	27.2.1 Latching of Fuses

	27.3 Signature Bytes
	27.4 Calibration Byte
	27.5 Page Size
	27.6 Parallel Programming Parameters, Pin Mapping, and Commands
	27.6.1 Signal Names

	27.7 Parallel Programming
	27.7.1 Enter Programming Mode
	27.7.2 Considerations for Efficient Programming
	27.7.3 Chip Erase
	27.7.4 Programming the Flash
	27.7.5 Programming the EEPROM
	27.7.6 Reading the Flash
	27.7.7 Reading the EEPROM
	27.7.8 Programming the Fuse Low Bits
	27.7.9 Programming the Fuse High Bits
	27.7.10 Programming the Extended Fuse Bits
	27.7.11 Programming the Lock Bits
	27.7.12 Reading the Fuse and Lock Bits
	27.7.13 Reading the Signature Bytes
	27.7.14 Reading the Calibration Byte
	27.7.15 Parallel Programming Characteristics

	27.8 Serial Downloading
	27.8.1 Serial Programming Pin Mapping
	27.8.2 Serial Programming Algorithm
	27.8.3 Serial Programming Instruction set
	27.8.4 SPI Serial Programming Characteristics

	28. Electrical Characteristics
	28.1 Absolute Maximum Ratings*
	28.2 DC Characteristics
	28.2.1 ATmega48PA DC Characteristics
	28.2.2 ATmega88PA DC Characteristics
	28.2.3 ATmega168PA DC Characteristics
	28.2.4 ATmega328P DC Characteristics

	28.3 Speed Grades
	28.4 Clock Characteristics
	28.4.1 Calibrated Internal RC Oscillator Accuracy
	28.4.2 External Clock Drive Waveforms
	28.4.3 External Clock Drive

	28.5 System and Reset Characteristics
	28.6 SPI Timing Characteristics
	28.7 2-wire Serial Interface Characteristics
	28.8 ADC Characteristics
	28.9 Parallel Programming Characteristics

	29. Typical Characteristics
	29.1 ATmega48PA Typical Characteristics
	29.1.1 Active Supply Current
	29.1.2 Idle Supply Current
	29.1.3 ATmega48PA: Supply Current of IO Modules
	Example

	29.1.4 Power-down Supply Current
	29.1.5 Power-save Supply Current
	29.1.6 Standby Supply Current
	29.1.7 Pin Pull-Up
	29.1.8 Pin Driver Strength
	29.1.9 Pin Threshold and Hysteresis
	29.1.10 BOD Threshold
	29.1.11 Internal Oscilllator Speed
	29.1.12 Current Consumption of Peripheral Units
	29.1.13 Current Consumption in Reset and Reset Pulsewidth

	29.2 ATmega88PA Typical Characteristics
	29.2.1 Active Supply Current
	29.2.2 Idle Supply Current
	29.2.3 ATmega88PA: Supply Current of IO Modules
	Example

	29.2.4 Power-down Supply Current
	29.2.5 Power-save Supply Current
	29.2.6 Standby Supply Current
	29.2.7 Pin Pull-Up
	29.2.8 Pin Driver Strength
	29.2.9 Pin Threshold and Hysteresis
	29.2.10 BOD Threshold
	29.2.11 Internal Oscilllator Speed
	29.2.12 Current Consumption of Peripheral Units
	29.2.13 Current Consumption in Reset and Reset Pulsewidth

	29.3 ATmega168PA Typical Characteristics
	29.3.1 Active Supply Current
	29.3.2 Idle Supply Current
	29.3.3 ATmega168PA Supply Current of IO Modules
	Example

	29.3.4 Power-down Supply Current
	29.3.5 Power-save Supply Current
	29.3.6 Standby Supply Current
	29.3.7 Pin Pull-Up
	29.3.8 Pin Driver Strength
	29.3.9 Pin Threshold and Hysteresis
	29.3.10 BOD Threshold
	29.3.11 Internal Oscilllator Speed
	29.3.12 Current Consumption of Peripheral Units
	29.3.13 Current Consumption in Reset and Reset Pulsewidth

	29.4 ATmega328P Typical Characteristics
	29.4.1 Active Supply Current
	29.4.2 Idle Supply Current
	29.4.3 ATmega328P Supply Current of IO Modules
	Example

	29.4.4 Power-down Supply Current
	29.4.5 Power-save Supply Current
	29.4.6 Standby Supply Current
	29.4.7 Pin Pull-Up
	29.4.8 Pin Driver Strength
	29.4.9 Pin Threshold and Hysteresis
	29.4.10 BOD Threshold
	29.4.11 Internal Oscilllator Speed
	29.4.12 Current Consumption of Peripheral Units
	29.4.13 Current Consumption in Reset and Reset Pulsewidth

	30. Register Summary
	31. Instruction Set Summary
	32. Ordering Information
	32.1 ATmega48PA
	32.2 ATmega88PA
	32.3 ATmega168PA
	32.4 ATmega328P

	33. Packaging Information
	33.1 32A
	33.2 28M1
	33.3 32M1-A
	33.4 28P3

	34. Errata
	34.1 Errata ATmega48PA
	34.1.1 Rev. D

	34.2 Errata ATmega88PA
	34.2.1 Rev. F

	34.3 Errata ATmega168PA
	34.3.1 Rev E

	34.4 Errata ATmega328P
	34.4.1 Rev D
	34.4.2 Rev C
	34.4.3 Rev B
	34.4.4 Rev A

	35. Datasheet Revision History
	35.1 Rev. 8161D – 10/09
	35.2 Rev. 8161C – 05/09
	35.3 Rev. 8161B – 01/09
	35.4 Rev. 8161A – 11/08

	Table of Contents

